Merchant Hugo, Grahn Jessica, Trainor Laurel, Rohrmeier Martin, Fitch W Tecumseh
Instituto de Neurobiología, UNAM, campus Juriquilla, Querétaro 76230, México
Brain and Mind Institute, and Department of Psychology, University of Western Ontario, London, Ontario, Canada N6A 5B7.
Philos Trans R Soc Lond B Biol Sci. 2015 Mar 19;370(1664):20140093. doi: 10.1098/rstb.2014.0093.
Humans possess an ability to perceive and synchronize movements to the beat in music ('beat perception and synchronization'), and recent neuroscientific data have offered new insights into this beat-finding capacity at multiple neural levels. Here, we review and compare behavioural and neural data on temporal and sequential processing during beat perception and entrainment tasks in macaques (including direct neural recording and local field potential (LFP)) and humans (including fMRI, EEG and MEG). These abilities rest upon a distributed set of circuits that include the motor cortico-basal-ganglia-thalamo-cortical (mCBGT) circuit, where the supplementary motor cortex (SMA) and the putamen are critical cortical and subcortical nodes, respectively. In addition, a cortical loop between motor and auditory areas, connected through delta and beta oscillatory activity, is deeply involved in these behaviours, with motor regions providing the predictive timing needed for the perception of, and entrainment to, musical rhythms. The neural discharge rate and the LFP oscillatory activity in the gamma- and beta-bands in the putamen and SMA of monkeys are tuned to the duration of intervals produced during a beat synchronization-continuation task (SCT). Hence, the tempo during beat synchronization is represented by different interval-tuned cells that are activated depending on the produced interval. In addition, cells in these areas are tuned to the serial-order elements of the SCT. Thus, the underpinnings of beat synchronization are intrinsically linked to the dynamics of cell populations tuned for duration and serial order throughout the mCBGT. We suggest that a cross-species comparison of behaviours and the neural circuits supporting them sets the stage for a new generation of neurally grounded computational models for beat perception and synchronization.
人类具备感知音乐节拍并与之同步运动的能力(“节拍感知与同步”),最近的神经科学数据在多个神经层面为这种节拍找寻能力提供了新的见解。在此,我们回顾并比较了猕猴(包括直接神经记录和局部场电位(LFP))和人类(包括功能磁共振成像(fMRI)、脑电图(EEG)和脑磁图(MEG))在节拍感知和跟随任务中进行时间和序列处理的行为及神经数据。这些能力依赖于一组分布式的神经回路,其中包括运动皮质 - 基底神经节 - 丘脑 - 皮质(mCBGT)回路,辅助运动区(SMA)和壳核分别是关键的皮质和皮质下节点。此外,通过δ波和β波振荡活动连接的运动和听觉区域之间的皮质环路也深度参与了这些行为,运动区域提供了感知和跟随音乐节奏所需的预测时间。猴子壳核和SMA中γ波段和β波段的神经放电率以及LFP振荡活动会根据节拍同步 - 延续任务(SCT)中产生的间隔持续时间进行调整。因此,节拍同步期间的节奏由不同的间隔调谐细胞表示,这些细胞根据产生的间隔被激活。此外,这些区域的细胞会被调整以适应SCT的序列元素。因此,节拍同步的基础与整个mCBGT中针对持续时间和序列顺序进行调谐的细胞群动态内在相关。我们认为,对行为及其支持的神经回路进行跨物种比较,为新一代基于神经的节拍感知和同步计算模型奠定了基础。