Trace Elements Speciation Laboratory Aberdeen, Chemistry Department, University of Aberdeen, UK; Natural Resource College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi.
Trace Elements Speciation Laboratory Aberdeen, Chemistry Department, University of Aberdeen, UK.
Sci Total Environ. 2020 Apr 1;711:134696. doi: 10.1016/j.scitotenv.2019.134696. Epub 2019 Nov 23.
Studies aiming to limit bioaccumulation of arsenic (As) and cadmium (Cd) in rice grain has attracted global attention. In this study, simultaneous impact of zero valent iron (Fe⁰) and various water management regimes (continuous flooding (CF), alternate wetting and drying (AWD) and low water (LW)) on rice grain yield (GYM) and bioaccumulation of As and Cd in unpolished rice grain (URG) were investigated. Compared to respective control treatments, Fe⁰ significantly reduced GYM under LW by 32% (p < 0.001) and significantly increased GYM under AWD by 24% (p = 0.009; F = 5.9) but had no significant effect on GYM under CF water management regime (p > 0.05). The grain harvest index was significantly higher in Fe⁰ amended rice under AWD (67%; p < 0.001) and CF (35%; p = 0.001) compared to those without Fe⁰ amendment. Fe⁰ significantly reduced tAs in URG under LW by 32% (p < 0.017) and significantly increased tAs in URG under AWD by 37% (p = 0.007) but had no significant effect on tAs in URG under CF (p > 0.05). The Cd concentrations were significantly reduced by 51% (p = 0.002) and 61% (p < 0.003) in URG under LW and AWD respectively compared to the respective control treatments. The Dimethylarsinic acid (DMA) in unpolished rice (URG) under AWD (+Fe⁰) was significantly higher (p < 0.01; F = 11.3) compared to that accumulated in URG under AWD(-Fe°). Despite increasing As accumulation in AWD water management, simultaneous use of AWD water management and Fe° increased grain yield, enhanced accumulation of less toxic methylated As in rice grains and accumulated low Cd concentrations comparable to that attainable with CF water management indicating that simultaneous use AWD and Fe° can be effective in controlling Cd accumulation in paddies highly contaminated with Cd.
本研究旨在限制砷(As)和镉(Cd)在稻米中的生物累积。在这项研究中,研究了零价铁(Fe⁰)和各种水分管理方式(连续淹水(CF)、干湿交替(AWD)和低水(LW))对糙米产量(GYM)和糙米中砷和镉生物累积的综合影响。与各自的对照处理相比,Fe⁰显著降低了 LW 处理下的 GYM 产量,降幅为 32%(p<0.001),显著增加了 AWD 处理下的 GYM 产量,增幅为 24%(p=0.009;F=5.9),但对 CF 水分管理方式下的 GYM 产量没有显著影响(p>0.05)。与未添加 Fe⁰的处理相比,在 AWD(67%;p<0.001)和 CF(35%;p=0.001)条件下,添加 Fe⁰的糙米的谷物收获指数显著更高。Fe⁰显著降低了 LW 条件下 URG 中的总砷(tAs)含量,降幅为 32%(p<0.017),显著增加了 AWD 条件下 URG 中的 tAs 含量,增幅为 37%(p=0.007),但对 CF 条件下 URG 中的 tAs 含量没有显著影响(p>0.05)。与各自的对照处理相比,LW 和 AWD 条件下 URG 中的 Cd 浓度分别降低了 51%(p=0.002)和 61%(p<0.003)。与 AWD(-Fe°)条件下 URG 中积累的 DMA 相比,AWD(+Fe⁰)条件下 URG 中的 DMA 含量显著更高(p<0.01;F=11.3)。尽管 AWD 水分管理增加了 As 的积累,但同时使用 AWD 水分管理和 Fe⁰增加了稻谷产量,提高了稻谷中低毒甲基化 As 的积累,并积累了与 CF 水分管理相当的低 Cd 浓度,表明同时使用 AWD 和 Fe⁰可以有效控制 Cd 在高度 Cd 污染的稻田中的积累。