Laboratory of Chromatin Biology and Epigenetics, The Rockefeller University, New York, NY, USA.
Department of Cancer Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
Nature. 2020 Jan;577(7788):121-126. doi: 10.1038/s41586-019-1842-7. Epub 2019 Dec 18.
Modifications of histone proteins have essential roles in normal development and human disease. Recognition of modified histones by 'reader' proteins is a key mechanism that mediates the function of histone modifications, but how the dysregulation of these readers might contribute to disease remains poorly understood. We previously identified the ENL protein as a reader of histone acetylation via its YEATS domain, linking it to the expression of cancer-driving genes in acute leukaemia. Recurrent hotspot mutations have been found in the ENL YEATS domain in Wilms tumour, the most common type of paediatric kidney cancer. Here we show, using human and mouse cells, that these mutations impair cell-fate regulation by conferring gain-of-function in chromatin recruitment and transcriptional control. ENL mutants induce gene-expression changes that favour a premalignant cell fate, and, in an assay for nephrogenesis using murine cells, result in undifferentiated structures resembling those observed in human Wilms tumour. Mechanistically, although bound to largely similar genomic loci as the wild-type protein, ENL mutants exhibit increased occupancy at a subset of targets, leading to a marked increase in the recruitment and activity of transcription elongation machinery that enforces active transcription from target loci. Furthermore, ectopically expressed ENL mutants exhibit greater self-association and form discrete and dynamic nuclear puncta that are characteristic of biomolecular hubs consisting of local high concentrations of regulatory factors. Such mutation-driven ENL self-association is functionally linked to enhanced chromatin occupancy and gene activation. Collectively, our findings show that hotspot mutations in a chromatin-reader domain drive self-reinforced recruitment, derailing normal cell-fate control during development and leading to an oncogenic outcome.
组蛋白蛋白的修饰在正常发育和人类疾病中具有重要作用。“读取器”蛋白对修饰组蛋白的识别是介导组蛋白修饰功能的关键机制,但这些读取器的失调如何导致疾病仍知之甚少。我们之前通过 YEATS 结构域发现 ENL 蛋白是组蛋白乙酰化的读取器,将其与急性白血病中驱动癌症的基因表达联系起来。在最常见的小儿肾母细胞瘤中,Wilms 肿瘤的 ENL YEATS 结构域中发现了反复出现的热点突变。在这里,我们使用人类和小鼠细胞表明,这些突变通过赋予染色质募集和转录控制的功能获得,从而损害细胞命运调节。ENL 突变体诱导有利于前恶性细胞命运的基因表达变化,并且在使用小鼠细胞进行的肾发生测定中,导致类似于在人类 Wilms 肿瘤中观察到的未分化结构。从机制上讲,尽管与野生型蛋白结合的基因组位点大致相似,但 ENL 突变体在一组靶标上的占有率增加,导致转录延伸机制的募集和活性显著增加,从而从靶标位点强制进行活跃转录。此外,异位表达的 ENL 突变体表现出更强的自我缔合,并形成离散且动态的核斑点,这是由局部高浓度调节因子组成的生物分子枢纽的特征。这种由突变驱动的 ENL 自我缔合与增强的染色质占有率和基因激活功能相关。总之,我们的研究结果表明,染色质读取器结构域中的热点突变驱动自我强化募集,破坏发育过程中正常的细胞命运控制,并导致致癌结果。