Xie Xiaowen, Zhang Olivia, Yeo Megan J R, Lee Ceejay, Tao Ran, Harry Stefan A, Payne N Connor, Nam Eunju, Paul Leena, Li Yiran, Kwok Hui Si, Jiang Hanjie, Mao Haibin, Hadley Jennifer L, Lin Hong, Batts Melissa, Gosavi Pallavi M, D'Angiolella Vincenzo, Cole Philip A, Mazitschek Ralph, Northcott Paul A, Zheng Ning, Liau Brian B
Department of Pharmacology, University of Washington, Seattle, WA, USA.
Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
Nature. 2025 Mar;639(8053):241-249. doi: 10.1038/s41586-024-08533-3. Epub 2025 Feb 12.
Cancer mutations can create neomorphic protein-protein interactions to drive aberrant function. As a substrate receptor of the CULLIN3-RING E3 ubiquitin ligase complex, KBTBD4 is recurrently mutated in medulloblastoma, the most common embryonal brain tumour in children. These mutations impart gain-of-function to KBTBD4 to induce aberrant degradation of the transcriptional corepressor CoREST. However, their mechanism remains unresolved. Here we establish that KBTBD4 mutations promote CoREST degradation through engaging HDAC1/2 as the direct target of the mutant substrate receptor. Using deep mutational scanning, we chart the mutational landscape of the KBTBD4 cancer hotspot, revealing distinct preferences by which insertions and substitutions can promote gain-of-function and the critical residues involved in the hotspot interaction. Cryo-electron microscopy analysis of two distinct KBTBD4 cancer mutants bound to LSD1-HDAC1-CoREST reveals that a KBTBD4 homodimer asymmetrically engages HDAC1 with two KELCH-repeat β-propeller domains. The interface between HDAC1 and one of the KBTBD4 β-propellers is stabilized by the medulloblastoma mutations, which insert a bulky side chain into the HDAC1 active site pocket. Our structural and mutational analyses inform how this hotspot E3-neosubstrate interface can be chemically modulated. First, we unveil a converging shape-complementarity-based mechanism between gain-of-function E3 mutations and a molecular glue degrader, UM171. Second, we demonstrate that HDAC1/2 inhibitors can block the mutant KBTBD4-HDAC1 interface and proliferation of KBTBD4-mutant medulloblastoma cells. Altogether, our work reveals the structural and mechanistic basis of cancer mutation-driven neomorphic protein-protein interactions.
癌症突变可产生新功能的蛋白质-蛋白质相互作用,从而驱动异常功能。作为CULLIN3-RING E3泛素连接酶复合物的底物受体,KBTBD4在髓母细胞瘤(儿童最常见的胚胎性脑肿瘤)中经常发生突变。这些突变赋予KBTBD4功能获得性,以诱导转录共抑制因子CoREST的异常降解。然而,其机制仍未得到解决。在这里,我们确定KBTBD4突变通过将HDAC1/2作为突变底物受体的直接靶点来促进CoREST降解。通过深度突变扫描,我们绘制了KBTBD4癌症热点区域的突变图谱,揭示了插入和替代促进功能获得性的不同偏好以及热点相互作用中涉及的关键残基。对与LSD1-HDAC1-CoREST结合的两种不同KBTBD4癌症突变体的冷冻电子显微镜分析表明,KBTBD4同二聚体通过两个KELCH重复β-螺旋桨结构域不对称地与HDAC1结合。HDAC1与KBTBD4的一个β-螺旋桨之间的界面通过髓母细胞瘤突变得以稳定,这些突变将一个大的侧链插入HDAC1活性位点口袋。我们的结构和突变分析揭示了这种热点E3-新底物界面如何进行化学调节。首先,我们揭示了功能获得性E3突变与分子胶降解剂UM171之间基于形状互补的趋同机制。其次,我们证明HDAC1/2抑制剂可以阻断突变的KBTBD4-HDAC1界面并抑制KBTBD4突变的髓母细胞瘤细胞的增殖。总之,我们的工作揭示了癌症突变驱动的新功能蛋白质-蛋白质相互作用的结构和机制基础。