Suppr超能文献

使用空气耦合超声光学相干弹性成像技术进行体内三维角膜弹性测量

In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography.

作者信息

Jin Zi, Khazaeinezhad Reza, Zhu Jiang, Yu Junxiao, Qu Yueqiao, He Youmin, Li Yan, Gomez Alvarez-Arenas Tomas E, Lu Fan, Chen Zhongping

机构信息

Beckman Laser Institute, Department of Biomedical Engineering, University of California, Irvine, Irvine, California 92612, USA.

School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325003, Zhejiang, China.

出版信息

Biomed Opt Express. 2019 Nov 14;10(12):6272-6285. doi: 10.1364/BOE.10.006272. eCollection 2019 Dec 1.

Abstract

Corneal elasticity can resist elastic deformations under intraocular pressure to maintain normal corneal shape, which has a great influence on corneal refractive function. Elastography can measure tissue elasticity and provide a powerful tool for clinical diagnosis. Air-coupled ultrasound optical coherence elastography (OCE) has been used in the quantification of ex-vivo corneal elasticity. However, in-vivo imaging of the cornea remains a challenge. The 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm was developed to distinguish the in-vivo cornea vibration from the axial eye motion in anesthetized rabbits and visualize the elastic wave propagation clearly. The elastic wave group velocity of in-vivo rabbit cornea was measured to be 5.96 ± 0.55 m/s, which agrees with other studies. The results show the potential of 3D air-coupled ultrasound OCE with an axial motion artifacts correction algorithm for quantitative in-vivo assessment of corneal elasticity.

摘要

角膜弹性可在眼内压作用下抵抗弹性变形,以维持正常角膜形状,这对角膜屈光功能有很大影响。弹性成像可测量组织弹性,为临床诊断提供有力工具。空气耦合超声光学相干弹性成像(OCE)已用于离体角膜弹性的定量分析。然而,角膜的体内成像仍然是一项挑战。开发了具有轴向运动伪影校正算法的三维空气耦合超声OCE,以区分麻醉兔体内角膜振动与轴向眼球运动,并清晰地可视化弹性波传播。测得兔体内角膜的弹性波群速度为5.96±0.55米/秒,这与其他研究结果一致。结果表明,具有轴向运动伪影校正算法的三维空气耦合超声OCE在角膜弹性定量体内评估方面具有潜力。

相似文献

1
In-vivo 3D corneal elasticity using air-coupled ultrasound optical coherence elastography.
Biomed Opt Express. 2019 Nov 14;10(12):6272-6285. doi: 10.1364/BOE.10.006272. eCollection 2019 Dec 1.
2
4
In Vivo Human Corneal Shear-wave Optical Coherence Elastography.
Optom Vis Sci. 2021 Jan 1;98(1):58-63. doi: 10.1097/OPX.0000000000001633.
5
Reverberant 3D optical coherence elastography maps the elasticity of individual corneal layers.
Nat Commun. 2019 Oct 25;10(1):4895. doi: 10.1038/s41467-019-12803-4.
6
Optical coherence elastography measures the biomechanical properties of the porcine cornea after LASIK.
J Biomed Opt. 2024 Jan;29(1):016002. doi: 10.1117/1.JBO.29.1.016002. Epub 2024 Jan 13.
7
Optical coherence elastography for assessing the influence of intraocular pressure on elastic wave dispersion in the cornea.
J Mech Behav Biomed Mater. 2022 Apr;128:105100. doi: 10.1016/j.jmbbm.2022.105100. Epub 2022 Jan 29.
9
Clinical Corneal Optical Coherence Elastography Measurement Precision: Effect of Heartbeat and Respiration.
Transl Vis Sci Technol. 2020 Apr 9;9(5):3. doi: 10.1167/tvst.9.5.3. eCollection 2020 Apr.
10
Heartbeat optical coherence elastography: corneal biomechanics in vivo.
J Biomed Opt. 2021 Feb;26(2). doi: 10.1117/1.JBO.26.2.020502.

引用本文的文献

2
Air-pulse optical coherence elastography: how excitation angle affects mechanical wave propagation.
Biomed Opt Express. 2025 Mar 11;16(4):1371-1391. doi: 10.1364/BOE.557984. eCollection 2025 Apr 1.
3
Chirp excitation for natural frequency optical coherence elastography.
Biomed Opt Express. 2024 Sep 13;15(10):5856-5871. doi: 10.1364/BOE.536685. eCollection 2024 Oct 1.
4
endoscopic optical coherence elastography based on a miniature probe.
Biomed Opt Express. 2024 Jun 12;15(7):4237-4252. doi: 10.1364/BOE.521154. eCollection 2024 Jul 1.
5
Simultaneous tensile and shear measurement of the human cornea in vivo using S0- and A0-wave optical coherence elastography.
Acta Biomater. 2024 Feb;175:114-122. doi: 10.1016/j.actbio.2023.12.019. Epub 2023 Dec 14.
8
Quantitative Optical Coherence Elastography of the Optic Nerve Head In Vivo.
IEEE Trans Biomed Eng. 2024 Mar;71(3):732-737. doi: 10.1109/TBME.2023.3316606. Epub 2024 Feb 26.
10
corneal elastography: A topical review of challenges and opportunities.
Comput Struct Biotechnol J. 2023 Apr 13;21:2664-2687. doi: 10.1016/j.csbj.2023.04.009. eCollection 2023.

本文引用的文献

1
Does group velocity always reflect elastic modulus in shear wave elastography?
J Biomed Opt. 2019 Jul;24(7):1-11. doi: 10.1117/1.JBO.24.7.076003.
2
Phase-stability optimization of swept-source optical coherence tomography.
Biomed Opt Express. 2018 Oct 9;9(11):5280-5295. doi: 10.1364/BOE.9.005280. eCollection 2018 Nov 1.
4
Quantifying the effects of hydration on corneal stiffness with noncontact optical coherence elastography.
J Cataract Refract Surg. 2018 Aug;44(8):1023-1031. doi: 10.1016/j.jcrs.2018.03.036. Epub 2018 Jul 23.
5
Biomechanics and structure of the cornea: implications and association with corneal disorders.
Surv Ophthalmol. 2018 Nov-Dec;63(6):851-861. doi: 10.1016/j.survophthal.2018.05.004. Epub 2018 May 30.
6
A focused air-pulse system for optical-coherence-tomography-based measurements of tissue elasticity.
Laser Phys Lett. 2013;10(7). doi: 10.1088/1612-2011/10/7/075605. Epub 2013 May 20.
9
In Vivo Elasticity Mapping of Posterior Ocular Layers Using Acoustic Radiation Force Optical Coherence Elastography.
Invest Ophthalmol Vis Sci. 2018 Jan 1;59(1):455-461. doi: 10.1167/iovs.17-22971.
10
Acoustic Radiation Force-Induced Creep-Recovery (ARFICR): A Noninvasive Method to Characterize Tissue Viscoelasticity.
IEEE Trans Ultrason Ferroelectr Freq Control. 2018 Jan;65(1):3-13. doi: 10.1109/TUFFC.2017.2768184.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验