用于固有频率光学相干弹性成像的线性调频激励

Chirp excitation for natural frequency optical coherence elastography.

作者信息

Song Chengjin, He Weichao, Song Pengfei, Feng Jinping, Huang Yanping, Xu Jingjiang, An Lin, Qin Jia, Gao Kai, Twa Michael D, Lan Gongpu

机构信息

Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory, School of Physics and Optoelectronic Engineering, Foshan University, Foshan, Guangdong 528000, China.

Institute of Engineering and Technology, Hubei University of Science and Technology, Xianning, Hubei 437100, China.

出版信息

Biomed Opt Express. 2024 Sep 13;15(10):5856-5871. doi: 10.1364/BOE.536685. eCollection 2024 Oct 1.

Abstract

Optical coherence elastography (OCE) has recently been used to characterize the natural frequencies of delicate tissues (e.g., the human cornea) with sub-micron tissue oscillation magnitudes. Here, we investigate broadband spectrum sample stimulation using a contact-based piezoelectric transducer (PZT) chirp excitation and compare its performance with a non-contact, air-pulse excitation for OCE measurements on 1.0-7.5% agar phantoms and an porcine cornea under intraocular pressures (IOPs) of 5-40 mmHg. The 3-ms duration air-pulse generated a ∼0-840 Hz excitation spectrum, effectively quantifying the first-order natural frequencies in softer samples (e.g., 1.0%-4.0% agar: 239-782 Hz, 198 Hz/%; porcine cornea: 68-414 Hz, 18 Hz/mmHg, IOP: 5-25 mmHg), but displayed limitations in measuring natural frequencies for stiffer samples (e.g., 4.5%-7.5% agar, porcine cornea: IOP ≥ 30 mmHg) or higher order natural frequency components. In contrast, the chirp excitation produced a much wider spectrum (e.g., 0-5000 Hz), enabling the quantification of both first-order natural frequencies (1.0%-7.5% agar: 253-1429 Hz, 181 Hz/%; porcine cornea: 76-1240 Hz, 32 Hz/mmHg, IOP: 5-40 mmHg) and higher order natural frequencies. A modified Bland-Altman analysis (mean versus relative difference in natural frequency) showed a bias of 20.4%, attributed to the additional mass and frequency introduced by the contact nature of the PZT probe. These findings, especially the advantages and limitations of both excitation methods, can be utilized to validate the potential application of natural frequency OCE, paving the way for the ongoing development of biomechanical characterization methods utilizing sub-micron tissue oscillation features.

摘要

光学相干弹性成像(OCE)最近已被用于表征精细组织(如人角膜)的固有频率,其组织振荡幅度可达亚微米级。在此,我们研究了使用基于接触的压电换能器(PZT)线性调频脉冲激励进行宽带频谱样本激励,并将其性能与非接触式空气脉冲激励进行比较,用于在5-40 mmHg的眼内压(IOP)下对1.0-7.5%琼脂模型和猪角膜进行OCE测量。持续时间为3毫秒的空气脉冲产生了约0-840 Hz的激励频谱,有效地量化了较软样本中的一阶固有频率(例如,1.0%-4.0%琼脂:239-782 Hz,198 Hz/%;猪角膜:68-414 Hz,18 Hz/mmHg,IOP:5-25 mmHg),但在测量较硬样本(例如,4.5%-7.5%琼脂,猪角膜:IOP≥30 mmHg)的固有频率或高阶固有频率分量时表现出局限性。相比之下,线性调频脉冲激励产生的频谱要宽得多(例如,0-5000 Hz),能够量化一阶固有频率(1.0%-7.5%琼脂:253-1429 Hz,181 Hz/%;猪角膜:76-1240 Hz,32 Hz/mmHg,IOP:5-40 mmHg)和高阶固有频率。一种改进的布兰德-奥特曼分析(固有频率的平均值与相对差异)显示偏差为20.4%,这归因于PZT探头的接触性质引入的额外质量和频率。这些发现,特别是两种激励方法的优点和局限性,可用于验证固有频率OCE的潜在应用,为利用亚微米级组织振荡特征的生物力学表征方法的持续发展铺平道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7144/11482180/9faf1c80f0b7/boe-15-10-5856-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索