Suppr超能文献

单细胞中基因表达与染色质可及性的同步分析。

Simultaneous profiling of gene expression and chromatin accessibility in single cells.

作者信息

Reyes Miguel, Billman Kianna, Hacohen Nir, Blainey Paul C

机构信息

Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Adv Biosyst. 2019 Nov;3(11). doi: 10.1002/adbi.201900065. Epub 2019 Aug 28.

Abstract

Profiling multiple omic layers in a single cell enables the discovery and analysis of biological phenomena that are not apparent from analysis of mono-omic data. While methods for multi-omic profiling have been reported, their adoption has been limited due to high cost and complex workflows. Here, we present a simple method for joint profiling of gene expression and chromatin accessibility in tens to hundreds of single cells. We assess the quality of resulting single cell ATAC- and RNA-seq data across three cell types, examine the link between accessibility and expression at the and loci in human primary T cells and monocytes, and compare the accuracy of clustering solutions for mono-omic and combined data. The new method allows biological laboratories to perform simultaneous profiling of gene expression and chromatin accessibility using standard reagents and instrumentation. This technique, in conjunction with other advances in multi-omic profiling, will enable highly-resolved cell state classification and more specific mechanistic hypothesis generation than is possible with mono-omic analysis.

摘要

在单个细胞中对多个组学层面进行分析,能够发现和分析单一组学数据分析中不明显的生物学现象。虽然已经报道了多组学分析方法,但由于成本高昂和工作流程复杂,其应用受到了限制。在这里,我们提出了一种简单的方法,用于在数十到数百个单细胞中联合分析基因表达和染色质可及性。我们评估了三种细胞类型中所得单细胞ATAC和RNA测序数据的质量,研究了人类原代T细胞和单核细胞中特定基因座处可及性与表达之间的联系,并比较了单一组学数据和组合数据聚类解决方案的准确性。这种新方法使生物实验室能够使用标准试剂和仪器同时分析基因表达和染色质可及性。与多组学分析的其他进展相结合,这项技术将实现比单一组学分析更高度解析的细胞状态分类和更具体的机制假设生成。

相似文献

1
Simultaneous profiling of gene expression and chromatin accessibility in single cells.
Adv Biosyst. 2019 Nov;3(11). doi: 10.1002/adbi.201900065. Epub 2019 Aug 28.
2
A simple and robust method for simultaneous dual-omics profiling with limited numbers of cells.
Cell Rep Methods. 2021 Jul 26;1(3). doi: 10.1016/j.crmeth.2021.100041. Epub 2021 Jun 30.
3
Profiling Chromatin Accessibility at Single-cell Resolution.
Genomics Proteomics Bioinformatics. 2021 Apr;19(2):172-190. doi: 10.1016/j.gpb.2020.06.010. Epub 2021 Feb 11.
4
Multi-omic single cell sequencing: Overview and opportunities for kidney disease therapeutic development.
Front Mol Biosci. 2023 Apr 5;10:1176856. doi: 10.3389/fmolb.2023.1176856. eCollection 2023.
5
ArchR is a scalable software package for integrative single-cell chromatin accessibility analysis.
Nat Genet. 2021 Mar;53(3):403-411. doi: 10.1038/s41588-021-00790-6. Epub 2021 Feb 25.
6
ATACgraph: Profiling Genome-Wide Chromatin Accessibility From ATAC-seq.
Front Genet. 2021 Jan 13;11:618478. doi: 10.3389/fgene.2020.618478. eCollection 2020.
7
Low-input ATAC&mRNA-seq protocol for simultaneous profiling of chromatin accessibility and gene expression.
STAR Protoc. 2021 Aug 27;2(3):100764. doi: 10.1016/j.xpro.2021.100764. eCollection 2021 Sep 17.
8
Protocol for scChaRM-seq: Simultaneous profiling of gene expression, DNA methylation, and chromatin accessibility in single cells.
STAR Protoc. 2021 Nov 20;2(4):100972. doi: 10.1016/j.xpro.2021.100972. eCollection 2021 Dec 17.
9
Chromatin Potential Identified by Shared Single-Cell Profiling of RNA and Chromatin.
Cell. 2020 Nov 12;183(4):1103-1116.e20. doi: 10.1016/j.cell.2020.09.056. Epub 2020 Oct 23.
10
ATAC-seq normalization method can significantly affect differential accessibility analysis and interpretation.
Epigenetics Chromatin. 2020 Apr 22;13(1):22. doi: 10.1186/s13072-020-00342-y.

引用本文的文献

2
Single-cell omics technologies - Fundamentals on how to create single-cell looking glasses for reproductive health.
Am J Obstet Gynecol. 2025 Apr;232(4S):S1-S20. doi: 10.1016/j.ajog.2024.08.041. Epub 2025 Mar 11.
3
FixNCut: A Practical Guide to Sample Preservation by Reversible Fixation for Single Cell Assays.
Bio Protoc. 2024 Sep 5;14(17):e5063. doi: 10.21769/BioProtoc.5063.
4
Inter- and trans-generational impacts of environmental exposures on the germline resolved at the single-cell level.
Curr Opin Toxicol. 2024 Jun;38. doi: 10.1016/j.cotox.2024.100465. Epub 2024 Feb 8.
5
Single-Nucleus Multiomic Analyses Identifies Gene Regulatory Dynamics of Phenotypic Modulation in Human Aneurysmal Aortic Root.
Adv Sci (Weinh). 2024 Jun;11(22):e2400444. doi: 10.1002/advs.202400444. Epub 2024 Mar 29.
6
Research progress of SWI/SNF complex in breast cancer.
Epigenetics Chromatin. 2024 Feb 17;17(1):4. doi: 10.1186/s13072-024-00531-z.
7
Three decades of advancements in osteoarthritis research: insights from transcriptomic, proteomic, and metabolomic studies.
Osteoarthritis Cartilage. 2024 Apr;32(4):385-397. doi: 10.1016/j.joca.2023.11.019. Epub 2023 Dec 2.
8
Multi-omics analysis in developmental bone biology.
Jpn Dent Sci Rev. 2023 Dec;59:412-420. doi: 10.1016/j.jdsr.2023.10.006. Epub 2023 Nov 10.
9
Single-cell sequencing technology applied to epigenetics for the study of tumor heterogeneity.
Clin Epigenetics. 2023 Oct 11;15(1):161. doi: 10.1186/s13148-023-01574-x.
10
Biophysically Interpretable Inference of Cell Types from Multimodal Sequencing Data.
bioRxiv. 2023 Sep 19:2023.09.17.558131. doi: 10.1101/2023.09.17.558131.

本文引用的文献

1
Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity.
Nat Commun. 2019 Jan 28;10(1):470. doi: 10.1038/s41467-018-08205-7.
2
A rapid and robust method for single cell chromatin accessibility profiling.
Nat Commun. 2018 Dec 17;9(1):5345. doi: 10.1038/s41467-018-07771-0.
3
Joint profiling of chromatin accessibility and gene expression in thousands of single cells.
Science. 2018 Sep 28;361(6409):1380-1385. doi: 10.1126/science.aau0730. Epub 2018 Aug 30.
4
Single-cell RNA sequencing technologies and bioinformatics pipelines.
Exp Mol Med. 2018 Aug 7;50(8):1-14. doi: 10.1038/s12276-018-0071-8.
5
Single-Cell Multi-omics: An Engine for New Quantitative Models of Gene Regulation.
Trends Genet. 2018 Sep;34(9):653-665. doi: 10.1016/j.tig.2018.06.001. Epub 2018 Jul 11.
6
Single-Cell (Multi)omics Technologies.
Annu Rev Genomics Hum Genet. 2018 Aug 31;19:15-41. doi: 10.1146/annurev-genom-091416-035324. Epub 2018 May 4.
8
SCANPY: large-scale single-cell gene expression data analysis.
Genome Biol. 2018 Feb 6;19(1):15. doi: 10.1186/s13059-017-1382-0.
9
A practical solution for preserving single cells for RNA sequencing.
Sci Rep. 2018 Feb 1;8(1):2151. doi: 10.1038/s41598-018-20372-7.
10
Single-cell epigenomics: Recording the past and predicting the future.
Science. 2017 Oct 6;358(6359):69-75. doi: 10.1126/science.aan6826.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验