School of Psychiatry, University of New South Wales Sydney, Sydney, NSW, Australia.
Neuroscience Research Australia, Randwick, NSW, Australia.
Neuropsychol Rev. 2020 Dec;30(4):446-460. doi: 10.1007/s11065-019-09422-7. Epub 2019 Dec 18.
The delineation of cognitive subtypes of schizophrenia and bipolar disorder may offer a means of determining shared genetic markers and neuropathology among individuals with these conditions. We systematically reviewed the evidence from published studies reporting the use of data-driven (i.e., unsupervised) clustering methods to delineate cognitive subtypes among adults diagnosed with schizophrenia, schizoaffective disorder, or bipolar disorder. We reviewed 24 studies in total, contributing data to 13 analyses of schizophrenia spectrum patients, 8 analyses of bipolar disorder, and 5 analyses of mixed samples of schizophrenia and bipolar disorder participants. Studies of bipolar disorder most consistently revealed a 3-cluster solution, comprising a subgroup with 'near-normal' (cognitively spared) cognition and two other subgroups demonstrating graded deficits across cognitive domains. In contrast, there was no clear consensus regarding the number of cognitive subtypes among studies of cognitive subtypes in schizophrenia, while four of the five studies of mixed diagnostic groups reported a 4-cluster solution. Common to all cluster solutions was a severe cognitive deficit subtype with cognitive impairments of moderate to large effect size relative to healthy controls. Our review highlights several key factors (e.g., symptom profile, sample size, statistical procedures, and cognitive domains examined) that may influence the results of data-driven clustering methods, and which were largely inconsistent across the studies reviewed. This synthesis of findings suggests caution should be exercised when interpreting the utility of particular cognitive subtypes for biological investigation, and demonstrates much heterogeneity among studies using unsupervised clustering approaches to cognitive subtyping within and across the psychosis spectrum.
精神分裂症和双相情感障碍认知亚型的划分可能为确定这些疾病患者之间共享的遗传标记和神经病理学提供一种方法。我们系统地回顾了已发表的研究报告,这些研究报告使用数据驱动(即无监督)聚类方法来划分成年精神分裂症、分裂情感障碍或双相情感障碍患者的认知亚型。我们总共审查了 24 项研究,这些研究为 13 项精神分裂症谱系患者分析、8 项双相情感障碍分析和 5 项精神分裂症和双相情感障碍混合样本分析提供了数据。双相情感障碍的研究最一致地揭示了 3 个聚类解决方案,包括一个具有“接近正常”(认知不受影响)认知的亚组和另外两个在认知领域表现出逐渐缺陷的亚组。相比之下,对于精神分裂症认知亚型研究中的认知亚型数量,没有明确的共识,而 5 项混合诊断组研究中有 4 项报告了 4 个聚类解决方案。所有聚类解决方案的共同点是严重认知缺陷亚型,与健康对照组相比,认知障碍具有中等至较大的效应大小。我们的综述强调了几个关键因素(例如症状谱、样本量、统计程序和检查的认知域),这些因素可能会影响数据驱动聚类方法的结果,而这些因素在综述的研究中基本不一致。这些发现的综合表明,在解释特定认知亚型对于生物学研究的效用时应谨慎行事,并表明在使用无监督聚类方法对精神障碍谱系内和跨谱系的认知亚型进行研究时存在很大的异质性。