Suppr超能文献

Min3:使用改进的结合位点表示方法和支持向量机预测微小RNA靶基因。

Min3: Predict microRNA target gene using an improved binding-site representation method and support vector machine.

作者信息

Huang Tinghua, Huang Xiali, Yao Min

机构信息

College of Animal Science, Yangtze University, Jingzhou, Hubei 434025, P. R. China.

出版信息

J Bioinform Comput Biol. 2019 Oct;17(5):1950032. doi: 10.1142/S021972001950032X.

Abstract

MicroRNAs are single-stranded noncoding RNAs known to down-regulate target genes at the protein or mRNA level. Computational prediction of targets is essential for elucidating the detailed functions of microRNA. However, prediction specificity and sensitivity of the existing algorithms still need to be improved to generate useful hypotheses for subsequent experimental testing. A new microRNA binding-site representation method was developed, which uses four symbols "", ":", "", and "" (indicating paired, unpaired, insertion, and bulge, respectively) to represent the status of each nucleotide base pair in the microRNA binding site. New features were established with the information of every two adjacent symbols. There are 12 possible combinations and the frequency of each defines a set of novel and useful features. A comprehensive training dataset is constructed for mammalian microRNAs with positive targets obtained from the microRNA target depository in the miRTarbase, while negative targets were derived from pseudo-microRNA bindings. An SVM model was established using the training dataset and a new software called Min3 was developed. Performance of Min3 was assessed with intensively studied examples of miR-155 and miR-92a. Prediction results showed that Min3 can discover 47% of experimental conformed targets on average. The overlapping is above 20% on average when compared with TargetScan and miRanda. Annotations of the public microRNA datasets showed that there is a negative effect (up-regulation) of the Min3 targets for the knock out/down of miR-155 and miR-92a. Six top ranked targets were selected for validation by wet-lab experiments, and five of them showed a regulation effect. The Min3 can be a good alternative to current microRNA target discovery software. This tool is available at https://sourceforge.net/projects/mirt3.

摘要

微小RNA是单链非编码RNA,已知其在蛋白质或mRNA水平下调靶基因。靶标的计算预测对于阐明微小RNA的详细功能至关重要。然而,现有算法的预测特异性和敏感性仍需提高,以便为后续实验测试生成有用的假设。开发了一种新的微小RNA结合位点表示方法,该方法使用四个符号“”、“:”、“”和“”(分别表示配对、未配对、插入和凸起)来表示微小RNA结合位点中每个核苷酸碱基对的状态。利用每两个相邻符号的信息建立了新的特征。有12种可能的组合,每种组合的频率定义了一组新颖且有用的特征。构建了一个用于哺乳动物微小RNA的综合训练数据集,其中阳性靶标来自miRTarbase中的微小RNA靶标库,而阴性靶标则来自伪微小RNA结合。使用训练数据集建立了一个支持向量机模型,并开发了一个名为Min3的新软件。用深入研究的miR-155和miR-92a实例评估了Min3的性能。预测结果表明,Min3平均可以发现47%的实验验证靶标。与TargetScan和miRanda相比,重叠率平均高于20%。公共微小RNA数据集的注释表明,对于miR-155和miR-92a的敲除/下调,Min3靶标有负面影响(上调)。选择了六个排名靠前的靶标进行湿实验室实验验证,其中五个显示出调控作用。Min3可以成为当前微小RNA靶标发现软件的一个很好的替代方案。该工具可在https://sourceforge.net/projects/mirt3上获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验