Suppr超能文献

通过对miRNA-靶标双链体进行图形建模准确预测人类miRNA靶标。

Accurate prediction of human miRNA targets via graph modeling of the miRNA-target duplex.

作者信息

Mohebbi Mohammad, Ding Liang, Malmberg Russell L, Momany Cory, Rasheed Khaled, Cai Liming

机构信息

1 Department of Computer Science, Appalachian State University, Boone, NC 28607, USA.

2 St. Jude Children's Research Hospital, Memphis, TN 38105, USA.

出版信息

J Bioinform Comput Biol. 2018 Aug;16(4):1850013. doi: 10.1142/S0219720018500130. Epub 2018 May 7.

Abstract

miRNAs are involved in many critical cellular activities through binding to their mRNA targets, e.g. in cell proliferation, differentiation, death, growth control, and developmental timing. Accurate prediction of miRNA targets can assist efficient experimental investigations on the functional roles of miRNAs. Their prediction, however, remains a challengeable task due to the lack of experimental data about the tertiary structure of miRNA-target binding duplexes. In particular, correlations of nucleotides in the binding duplexes may not be limited to the canonical Watson Crick base pairs (BPs) as they have been perceived; methods based on secondary structure prediction (typically minimum free energy (MFE)) have only had mix success. In this work, we characterized miRNA binding duplexes with a graph model to capture the correlations between pairs of nucleotides of an miRNA and its target sequences. We developed machine learning algorithms to train the graph model to predict the target sites of miRNAs. In particular, because imbalance between positive and negative samples can significantly deteriorate the performance of machine learning methods, we designed a novel method to re-sample available dataset to produce more informative data learning process. We evaluated our model and miRNA target prediction method on human miRNAs and target data obtained from mirTarBase, a database of experimentally verified miRNA-target interactions. The performance of our method in target prediction achieved a sensitivity of 86% with a false positive rate below 13%. In comparison with the state-of-the-art methods miRanda and RNAhybrid on the test data, our method outperforms both of them by a significant margin. The source codes, test sets and model files all are available at http://rna-informatics.uga.edu/?f=software&p=GraB-miTarget .

摘要

微小RNA(miRNA)通过与信使核糖核酸(mRNA)靶标结合参与许多关键的细胞活动,例如在细胞增殖、分化、死亡、生长控制和发育时间调控方面。准确预测miRNA靶标有助于对miRNA的功能作用进行高效的实验研究。然而,由于缺乏关于miRNA - 靶标结合双链体三级结构的实验数据,其预测仍然是一项具有挑战性的任务。特别是,结合双链体中核苷酸的相关性可能并不局限于人们所认为的经典沃森 - 克里克碱基对(BP);基于二级结构预测(通常是最小自由能(MFE))的方法仅有一定的成功。在这项工作中,我们用一种图模型来表征miRNA结合双链体,以捕捉miRNA及其靶标序列核苷酸对之间的相关性。我们开发了机器学习算法来训练图模型以预测miRNA的靶位点。特别是,由于正负样本之间的不平衡会显著降低机器学习方法的性能,我们设计了一种新颖的方法对可用数据集进行重新采样,以产生更具信息性的数据学习过程。我们使用从mirTarBase(一个经过实验验证的miRNA - 靶标相互作用数据库)获得的人类miRNA和靶标数据对我们的模型和miRNA靶标预测方法进行了评估。我们方法在靶标预测中的性能达到了86%的灵敏度,假阳性率低于13%。与测试数据上的现有方法miRanda和RNAhybrid相比,我们的方法在很大程度上优于它们两者。源代码、测试集和模型文件均可在http://rna - informatics.uga.edu/?f = software&p = GraB - miTarget获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验