Suppr超能文献

小兆伏辐射场堆聚区域中的探测器响应。

Detector response in the buildup region of small MV fields.

机构信息

Department of Radiation Oncology, University of Wuerzburg, Josef-Schneider-Str. 11, 97080, Wuerzburg, Germany.

Institute of Physics, Martin-Luther-Universität Halle-Wittenberg, Von-Danckelmann-Platz 3, 06120, Halle (Saale), Germany.

出版信息

Med Phys. 2020 Mar;47(3):1327-1339. doi: 10.1002/mp.13973. Epub 2020 Jan 20.

Abstract

PURPOSE

The model used to calculate dose distributions in a radiotherapy treatment plan relies on the data entered during beam commissioning. The quality of these data heavily depends on the detector choice made, especially in small fields and in the buildup region. Therefore, it is necessary to identify suitable detectors for measurements in the buildup region of small fields. To aid the understanding of a detector's limitations, several factors that influence the detector signal are to be analyzed, for example, the volume effect due to the detector size, the response to electron contamination, the signal dependence on the polarity used, and the effective point of measurement chosen.

METHODS

We tested the suitability of different small field detectors for measurements of depth dose curves with a special focus on the surface-near area of dose buildup for fields sized between 10 × 10 and 0.6 × 0.6 cm . Depth dose curves were measured with 14 different detectors including plane-parallel chambers, thimble chambers of different types and sizes, shielded and unshielded diodes as well as a diamond detector. Those curves were compared with depth dose curves acquired on Gafchromic film. Additionally, the magnitude of geometric volume corrections was estimated from film profiles in different depths. Furthermore, a lead foil was inserted into the beam to reduce contaminating electrons and to study the resulting changes of the detector response. The role of the effective point of measurement was investigated by quantifying the changes occurring when shifting depth dose curves. Last, measurements for the small ionization chambers taken at opposing biasing voltages were compared to study polarity effects.

RESULTS

Depth-dependent correction factors for relative depth dose curves with different detectors were derived. Film, the Farmer chamber FC23, a 0.13 cm scanning chamber CC13 and a plane-parallel chamber PPC05 agree very well in fields sized 4 × 4 and 10 × 10 cm . For most detectors and in smaller fields, depth dose curves differ from the film. In general, shielded diodes require larger corrections than unshielded diodes. Neither the geometric volume effect nor the electron contamination can account for the detector differences. The biggest uncertainty arises from the positioning of a detector with respect to the water surface and from the choice of the detector's effective point of measurement. Depth dose curves acquired with small ionization chambers differ by over 15% in the buildup region depending on sign of the biasing voltage used.

CONCLUSIONS

A scanning chamber or a PPC40 chamber is suitable for fields larger than 4 × 4 cm . Below that field size, the microDiamond or small ionization chambers perform best requiring the smallest corrections at depth as well as in the buildup region. Diode response changes considerably between the different types of detectors. The position of the effective point of measurement has a huge effect on the resulting curves, therefore detector specific rather than general shifts of half the inner radius of cylindrical ionization chambers for the effective point of measurement should be used. For small ionization chambers, averaging between both polarities is necessary for data obtained near the surface.

摘要

目的

用于计算放射治疗计划中剂量分布的模型依赖于束流调试过程中输入的数据。这些数据的质量在很大程度上取决于所选择的探测器,特别是在小射野和建成区。因此,有必要确定适合小射野建成区测量的探测器。为了帮助理解探测器的局限性,需要分析影响探测器信号的几个因素,例如探测器尺寸引起的体积效应、对电子污染的响应、信号对所使用极性的依赖性以及所选的有效测量点。

方法

我们测试了不同小射野探测器测量深度剂量曲线的适用性,特别关注 10×10 至 0.6×0.6cm 大小射野的表面附近剂量建成区。使用 14 种不同的探测器(包括平面平行室、不同类型和尺寸的指状室、屏蔽和非屏蔽二极管以及钻石探测器)测量深度剂量曲线。将这些曲线与在 Gafchromic 胶片上获得的深度剂量曲线进行比较。此外,还从不同深度的胶片轮廓估计了几何体积校正的幅度。此外,在射束中插入铅箔以减少污染电子,并研究探测器响应的变化。通过量化有效测量点移位时发生的变化,研究了有效测量点的作用。最后,通过比较在相反偏置电压下对小电离室的测量,研究了极性效应。

结果

为不同探测器的相对深度剂量曲线推导了深度相关的校正因子。胶片、 Farmer 室 FC23、0.13cm 扫描室 CC13 和平面平行室 PPC05 在 4×4 和 10×10cm 大小的射野中非常吻合。对于大多数探测器和较小的射野,深度剂量曲线与胶片不同。一般来说,屏蔽二极管比非屏蔽二极管需要更大的校正。几何体积效应和电子污染都不能解释探测器的差异。最大的不确定性来自探测器相对于水面的位置以及探测器有效测量点的选择。使用不同偏置电压获得的小电离室深度剂量曲线在建成区差异超过 15%。

结论

扫描室或 PPC40 室适用于大于 4×4cm 的射野。在那个射野尺寸以下,微钻石或小电离室表现最好,在深度和建成区需要的校正最小。二极管的响应在不同类型的探测器之间有很大的变化。有效测量点的位置对最终曲线有很大的影响,因此,应该使用特定于探测器的而不是一般的圆柱形电离室内部半径的一半作为有效测量点的偏移。对于小电离室,在表面附近获得的数据需要在两个极性之间进行平均。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验