Suppr超能文献

用于差异表达分析的混合效应线性建模中完全调节的 t 统计量。

Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis.

机构信息

Center for Biostatistics, Department of Biomedical Informatics, The Ohio State University, 1800 Cannon Dr., Columbus, 43210, OH, USA.

出版信息

BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):675. doi: 10.1186/s12859-019-3248-9.

Abstract

BACKGROUND

Gene expression profiling experiments with few replicates lead to great variability in the estimates of gene variances. Toward this end, several moderated t-test methods have been developed to reduce this variability and to increase power for testing differential expression. Most of these moderated methods are based on linear models with fixed effects where residual variances are smoothed under a hierarchical Bayes framework. However, they are inadequate for designs with complex correlation structures, therefore application of moderated methods to linear models with mixed effects are needed for differential expression analysis.

RESULTS

We demonstrated the implementation of the fully moderated t-statistic method for linear models with mixed effects, where both residual variances and variance estimates of random effects are smoothed under a hierarchical Bayes framework. We compared the proposed method with two current moderated methods and show that the proposed method can control the expected number of false positives at the nominal level, while the two current moderated methods fail.

CONCLUSIONS

We proposed an approach for testing differential expression under complex correlation structures while providing variance shrinkage. The proposed method is able to improve power by moderation and controls the expected number of false positives properly at the nominal level.

摘要

背景

具有少量重复的基因表达谱实验会导致基因方差估计的极大变异性。为此,已经开发了几种经过修正的 t 检验方法,以减少这种变异性并提高测试差异表达的能力。这些经过修正的方法大多数基于带有固定效应的线性模型,其中在分层贝叶斯框架下对残差方差进行平滑处理。然而,它们对于具有复杂相关结构的设计来说是不够的,因此需要将经过修正的方法应用于带有混合效应的线性模型,以进行差异表达分析。

结果

我们展示了带有混合效应的线性模型的完全修正 t 统计量方法的实现,其中在分层贝叶斯框架下对残差方差和随机效应的方差估计进行平滑处理。我们将所提出的方法与两种现有的修正方法进行了比较,并表明所提出的方法可以在名义水平上控制假阳性的预期数量,而这两种现有的修正方法则无法做到这一点。

结论

我们提出了一种在具有复杂相关结构的情况下进行差异表达测试的方法,同时提供方差收缩。所提出的方法通过修正可以提高功效,并在名义水平上适当控制假阳性的预期数量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/86c8/6923909/d13390df3c70/12859_2019_3248_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验