Suppr超能文献

针对小样本量基因表达阵列的完全校正T统计量。

Fully moderated T-statistic for small sample size gene expression arrays.

作者信息

Yu Lianbo, Gulati Parul, Fernandez Soledad, Pennell Michael, Kirschner Lawrence, Jarjoura David

机构信息

The Ohio State University, USA.

出版信息

Stat Appl Genet Mol Biol. 2011 Sep 15;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1701/1544-6115.1701.xml. doi: 10.2202/1544-6115.1701.

Abstract

Gene expression microarray experiments with few replications lead to great variability in estimates of gene variances. Several Bayesian methods have been developed to reduce this variability and to increase power. Thus far, moderated t methods assumed a constant coefficient of variation (CV) for the gene variances. We provide evidence against this assumption, and extend the method by allowing the CV to vary with gene expression. Our CV varying method, which we refer to as the fully moderated t-statistic, was compared to three other methods (ordinary t, and two moderated t predecessors). A simulation study and a familiar spike-in data set were used to assess the performance of the testing methods. The results showed that our CV varying method had higher power than the other three methods, identified a greater number of true positives in spike-in data, fit simulated data under varying assumptions very well, and in a real data set better identified higher expressing genes that were consistent with functional pathways associated with the experiments.

摘要

重复次数较少的基因表达微阵列实验会导致基因方差估计值出现很大的变异性。已经开发了几种贝叶斯方法来减少这种变异性并提高检验效能。到目前为止,适度t方法假定基因方差的变异系数(CV)是恒定的。我们提供了反对这一假设的证据,并通过允许CV随基因表达而变化来扩展该方法。我们将CV可变方法(我们称之为完全适度t统计量)与其他三种方法(普通t方法以及两种适度t方法的前身)进行了比较。使用模拟研究和一个常见的掺入数据组来评估检验方法的性能。结果表明,我们的CV可变方法比其他三种方法具有更高的检验效能,在掺入数据中识别出更多的真阳性,在不同假设下能很好地拟合模拟数据,并且在一个真实数据集中能更好地识别与实验相关功能途径一致的高表达基因。

相似文献

1
Fully moderated T-statistic for small sample size gene expression arrays.
Stat Appl Genet Mol Biol. 2011 Sep 15;10(1):/j/sagmb.2011.10.issue-1/1544-6115.1701/1544-6115.1701.xml. doi: 10.2202/1544-6115.1701.
3
Empirical Bayes models for multiple probe type microarrays at the probe level.
BMC Bioinformatics. 2008 Mar 20;9:156. doi: 10.1186/1471-2105-9-156.
5
A random variance model for detection of differential gene expression in small microarray experiments.
Bioinformatics. 2003 Dec 12;19(18):2448-55. doi: 10.1093/bioinformatics/btg345.
6
Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments.
Bioinformatics. 2006 Jun 15;22(12):1486-94. doi: 10.1093/bioinformatics/btl109. Epub 2006 Mar 30.
7
Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis.
BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):675. doi: 10.1186/s12859-019-3248-9.
8
Multivariate hierarchical Bayesian model for differential gene expression analysis in microarray experiments.
BMC Bioinformatics. 2008;9 Suppl 1(Suppl 1):S9. doi: 10.1186/1471-2105-9-S1-S9.
9
A note on using permutation-based false discovery rate estimates to compare different analysis methods for microarray data.
Bioinformatics. 2005 Dec 1;21(23):4280-8. doi: 10.1093/bioinformatics/bti685. Epub 2005 Sep 27.

引用本文的文献

1
ImShot: An Open-Source Software for Probabilistic Identification of Proteins In Situ and Visualization of Proteomics Data.
Mol Cell Proteomics. 2022 Jun;21(6):100242. doi: 10.1016/j.mcpro.2022.100242. Epub 2022 May 13.
3
MSstatsTMT: Statistical Detection of Differentially Abundant Proteins in Experiments with Isobaric Labeling and Multiple Mixtures.
Mol Cell Proteomics. 2020 Oct;19(10):1706-1723. doi: 10.1074/mcp.RA120.002105. Epub 2020 Jul 17.
4
Fully moderated t-statistic in linear modeling of mixed effects for differential expression analysis.
BMC Bioinformatics. 2019 Dec 20;20(Suppl 24):675. doi: 10.1186/s12859-019-3248-9.
5
The role of extracellular matrix in mouse and human corneal neovascularization.
Sci Rep. 2019 Oct 3;9(1):14272. doi: 10.1038/s41598-019-50718-8.
6
Metabolic gene NR4A1 as a potential therapeutic target for non-smoking female non-small cell lung cancer patients.
Thorac Cancer. 2019 Apr;10(4):715-727. doi: 10.1111/1759-7714.12989. Epub 2019 Feb 25.
7
multiHiCcompare: joint normalization and comparative analysis of complex Hi-C experiments.
Bioinformatics. 2019 Sep 1;35(17):2916-2923. doi: 10.1093/bioinformatics/btz048.
8
Disruption of stromal hedgehog signaling initiates RNF5-mediated proteasomal degradation of PTEN and accelerates pancreatic tumor growth.
Life Sci Alliance. 2018 Oct 26;1(5):e201800190. doi: 10.26508/lsa.201800190. eCollection 2018 Oct.
9
The role of SMAD3 in the genetic predisposition to papillary thyroid carcinoma.
Genet Med. 2018 Sep;20(9):927-935. doi: 10.1038/gim.2017.224. Epub 2018 Jan 4.
10
RCAN1-4 is a thyroid cancer growth and metastasis suppressor.
JCI Insight. 2017 Mar 9;2(5):e90651. doi: 10.1172/jci.insight.90651.

本文引用的文献

1
Thyroid-specific ablation of the Carney complex gene, PRKAR1A, results in hyperthyroidism and follicular thyroid cancer.
Endocr Relat Cancer. 2012 May 24;19(3):435-46. doi: 10.1530/ERC-11-0306. Print 2012 Jun.
2
Mouse models of altered protein kinase A signaling.
Endocr Relat Cancer. 2009 Sep;16(3):773-93. doi: 10.1677/ERC-09-0068. Epub 2009 May 26.
4
Feature-level exploration of a published Affymetrix GeneChip control dataset.
Genome Biol. 2006;7(8):404. doi: 10.1186/gb-2006-7-8-404.
5
Linear models and empirical bayes methods for assessing differential expression in microarray experiments.
Stat Appl Genet Mol Biol. 2004;3:Article3. doi: 10.2202/1544-6115.1027. Epub 2004 Feb 12.
6
A reanalysis of a published Affymetrix GeneChip control dataset.
Genome Biol. 2006;7(3):401. doi: 10.1186/gb-2006-7-3-401. Epub 2006 Mar 22.
7
A two-sample Bayesian t-test for microarray data.
BMC Bioinformatics. 2006 Mar 10;7:126. doi: 10.1186/1471-2105-7-126.
8
Preferred analysis methods for Affymetrix GeneChips revealed by a wholly defined control dataset.
Genome Biol. 2005;6(2):R16. doi: 10.1186/gb-2005-6-2-r16. Epub 2005 Jan 28.
9
Improved statistical tests for differential gene expression by shrinking variance components estimates.
Biostatistics. 2005 Jan;6(1):59-75. doi: 10.1093/biostatistics/kxh018.
10
Significance analysis of microarrays applied to the ionizing radiation response.
Proc Natl Acad Sci U S A. 2001 Apr 24;98(9):5116-21. doi: 10.1073/pnas.091062498. Epub 2001 Apr 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验