Suppr超能文献

β-甲基氨基-L-丙氨酸抑制tRNA氨基酰化的机制及其对错误掺入的影响。

The mechanism of β--methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation.

作者信息

Han Nien-Ching, Bullwinkle Tammy J, Loeb Kaeli F, Faull Kym F, Mohler Kyle, Rinehart Jesse, Ibba Michael

机构信息

Department of Microbiology, The Ohio State University, Columbus, Ohio 43220.

Pasarow Mass Spectrometry Laboratory, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, California 90024-1759.

出版信息

J Biol Chem. 2020 Jan 31;295(5):1402-1410. doi: 10.1074/jbc.RA119.011714. Epub 2019 Dec 20.

Abstract

β--methylamino-l-alanine (BMAA) is a nonproteinogenic amino acid that has been associated with neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and Alzheimer's disease (AD). BMAA has been found in human protein extracts; however, the mechanism by which it enters the proteome is still unclear. It has been suggested that BMAA is misincorporated at serine codons during protein synthesis, but direct evidence of its cotranslational incorporation is currently lacking. Here, using LC-MS-purified BMAA and several biochemical assays, we sought to determine whether any aminoacyl-tRNA synthetase (aaRS) utilizes BMAA as a substrate for aminoacylation. Despite BMAA's previously predicted misincorporation at serine codons, following a screen for amino acid activation in ATP/PP exchange assays, we observed that BMAA is not a substrate for human seryl-tRNA synthetase (SerRS). Instead, we observed that BMAA is a substrate for human alanyl-tRNA synthetase (AlaRS) and can form BMAA-tRNA by escaping from the intrinsic AlaRS proofreading activity. Furthermore, we found that BMAA inhibits both the cognate amino acid activation and the editing functions of AlaRS. Our results reveal that, in addition to being misincorporated during translation, BMAA may be able to disrupt the integrity of protein synthesis through multiple different mechanisms.

摘要

β-甲基氨基-L-丙氨酸(BMAA)是一种非蛋白质氨基酸,与神经退行性疾病有关,包括肌萎缩侧索硬化症(ALS)和阿尔茨海默病(AD)。BMAA已在人体蛋白质提取物中被发现;然而,其进入蛋白质组的机制仍不清楚。有人提出,BMAA在蛋白质合成过程中会错误地掺入丝氨酸密码子,但目前缺乏其共翻译掺入的直接证据。在这里,我们使用液相色谱-质谱纯化的BMAA和几种生化分析方法,试图确定是否有任何氨酰-tRNA合成酶(aaRS)将BMAA用作氨酰化的底物。尽管之前预测BMAA会错误地掺入丝氨酸密码子,但在ATP/PP交换分析中筛选氨基酸活化后,我们观察到BMAA不是人丝氨酰-tRNA合成酶(SerRS)的底物。相反,我们观察到BMAA是人丙氨酰-tRNA合成酶(AlaRS)的底物,并且可以通过逃避AlaRS固有的校对活性形成BMAA-tRNA。此外,我们发现BMAA抑制AlaRS的同源氨基酸活化和编辑功能。我们的结果表明,除了在翻译过程中错误掺入外,BMAA还可能通过多种不同机制破坏蛋白质合成的完整性。

相似文献

1
The mechanism of β--methylamino-l-alanine inhibition of tRNA aminoacylation and its impact on misincorporation.
J Biol Chem. 2020 Jan 31;295(5):1402-1410. doi: 10.1074/jbc.RA119.011714. Epub 2019 Dec 20.
2
Escherichia coli alanyl-tRNA synthetase maintains proofreading activity and translational accuracy under oxidative stress.
J Biol Chem. 2022 Mar;298(3):101601. doi: 10.1016/j.jbc.2022.101601. Epub 2022 Jan 20.
3
Misacylation of pyrrolysine tRNA in vitro and in vivo.
FEBS Lett. 2008 Oct 15;582(23-24):3353-8. doi: 10.1016/j.febslet.2008.08.027. Epub 2008 Sep 5.
5
The uniqueness of AlaRS and its human disease connections.
RNA Biol. 2021 Nov;18(11):1501-1511. doi: 10.1080/15476286.2020.1861803. Epub 2020 Dec 23.
6
Substrate specificity and catalysis by the editing active site of Alanyl-tRNA synthetase from Escherichia coli.
Biochemistry. 2011 Mar 8;50(9):1474-82. doi: 10.1021/bi1013535. Epub 2011 Jan 31.
7
9
Perseverance of protein homeostasis despite mistranslation of glycine codons with alanine.
Philos Trans R Soc Lond B Biol Sci. 2023 Feb 27;378(1871):20220029. doi: 10.1098/rstb.2022.0029. Epub 2023 Jan 11.
10

引用本文的文献

2
Structural basis for aminoacylation of cellular modified tRNA by human lysyl-tRNA synthetase.
bioRxiv. 2024 Dec 8:2024.12.07.627298. doi: 10.1101/2024.12.07.627298.
3
Selection, characterization, and biosensing applications of DNA aptamers targeting cyanotoxin BMAA.
RSC Adv. 2024 Apr 26;14(20):13787-13800. doi: 10.1039/d4ra02384f. eCollection 2024 Apr 25.
5
Evaluation of cyanotoxin L-BMAA effect on α-synuclein and TDP43 proteinopathy.
Front Immunol. 2024 Mar 26;15:1360068. doi: 10.3389/fimmu.2024.1360068. eCollection 2024.
7
System-wide optimization of an orthogonal translation system with enhanced biological tolerance.
Mol Syst Biol. 2023 Aug 8;19(8):e10591. doi: 10.15252/msb.202110591. Epub 2023 Jul 21.
9
Freshwater Cyanobacterial Toxins, Cyanopeptides and Neurodegenerative Diseases.
Toxins (Basel). 2023 Mar 21;15(3):233. doi: 10.3390/toxins15030233.

本文引用的文献

1
Cyanobacterial neurotoxin BMAA and brain pathology in stranded dolphins.
PLoS One. 2019 Mar 20;14(3):e0213346. doi: 10.1371/journal.pone.0213346. eCollection 2019.
2
ANKRD16 prevents neuron loss caused by an editing-defective tRNA synthetase.
Nature. 2018 May;557(7706):510-515. doi: 10.1038/s41586-018-0137-8. Epub 2018 May 16.
3
Stress effects of cyanotoxin β-methylamino-L-alanine (BMAA) on cyanobacterial heterocyst formation and functionality.
Environ Microbiol Rep. 2018 Jun;10(3):369-377. doi: 10.1111/1758-2229.12647. Epub 2018 May 6.
4
BMAA-protein interactions: A possible new mechanism of toxicity.
Toxicon. 2018 Mar 1;143:74-80. doi: 10.1016/j.toxicon.2018.01.011.
5
mRNA Translation Gone Awry: Translation Fidelity and Neurological Disease.
Trends Genet. 2018 Mar;34(3):218-231. doi: 10.1016/j.tig.2017.12.007. Epub 2018 Jan 16.
6
8
Exposure to BMAA mirrors molecular processes linked to neurodegenerative disease.
Proteomics. 2017 Sep;17(17-18). doi: 10.1002/pmic.201700161. Epub 2017 Aug 24.
9
Translational fidelity and mistranslation in the cellular response to stress.
Nat Microbiol. 2017 Aug 24;2:17117. doi: 10.1038/nmicrobiol.2017.117.
10
Insights into substrate promiscuity of human seryl-tRNA synthetase.
RNA. 2017 Nov;23(11):1685-1699. doi: 10.1261/rna.061069.117. Epub 2017 Aug 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验