Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana 010000, Kazakhstan.
Center for Life Sciences, National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Toxins (Basel). 2023 Mar 21;15(3):233. doi: 10.3390/toxins15030233.
Cyanobacteria produce a wide range of structurally diverse cyanotoxins and bioactive cyanopeptides in freshwater, marine, and terrestrial ecosystems. The health significance of these metabolites, which include genotoxic- and neurotoxic agents, is confirmed by continued associations between the occurrence of animal and human acute toxic events and, in the long term, by associations between cyanobacteria and neurodegenerative diseases. Major mechanisms related to the neurotoxicity of cyanobacteria compounds include (1) blocking of key proteins and channels; (2) inhibition of essential enzymes in mammalian cells such as protein phosphatases and phosphoprotein phosphatases as well as new molecular targets such as toll-like receptors 4 and 8. One of the widely discussed implicated mechanisms includes a misincorporation of cyanobacterial non-proteogenic amino acids. Recent research provides evidence that non-proteinogenic amino acid BMAA produced by cyanobacteria have multiple effects on translation process and bypasses the proof-reading ability of the aminoacyl-tRNA-synthetase. Aberrant proteins generated by non-canonical translation may be a factor in neuronal death and neurodegeneration. We hypothesize that the production of cyanopeptides and non-canonical amino acids is a more general mechanism, leading to mistranslation, affecting protein homeostasis, and targeting mitochondria in eukaryotic cells. It can be evolutionarily ancient and initially developed to control phytoplankton communities during algal blooms. Outcompeting gut symbiotic microorganisms may lead to dysbiosis, increased gut permeability, a shift in blood-brain-barrier functionality, and eventually, mitochondrial dysfunction in high-energy demanding neurons. A better understanding of the interaction between cyanopeptides metabolism and the nervous system will be crucial to target or to prevent neurodegenerative diseases.
蓝藻在淡水、海洋和陆地生态系统中产生广泛的结构多样的蓝藻毒素和生物活性蓝肽。这些代谢物的健康意义已得到证实,因为动物和人类急性中毒事件的发生与蓝藻之间存在持续的关联,而且从长远来看,蓝藻与神经退行性疾病之间也存在关联。与蓝藻化合物的神经毒性相关的主要机制包括:(1)阻止关键蛋白和通道;(2)抑制哺乳动物细胞中的必需酶,如蛋白磷酸酶和磷酸蛋白磷酸酶,以及新的分子靶点,如 Toll 样受体 4 和 8。其中一个广泛讨论的机制包括蓝藻非蛋白氨基酸的错误掺入。最近的研究提供了证据,表明蓝藻产生的非蛋白氨基酸 BMAA 对翻译过程有多种影响,并绕过了氨酰-tRNA 合成酶的校对能力。非典型翻译产生的异常蛋白可能是神经元死亡和神经退行性变的一个因素。我们假设蓝肽和非典型氨基酸的产生是一种更普遍的机制,导致翻译错误,影响蛋白质稳态,并靶向真核细胞中的线粒体。它可能是古老的进化机制,最初是为了在藻类大量繁殖期间控制浮游植物群落而发展起来的。竞争肠道共生微生物可能导致肠道微生物失调、肠道通透性增加、血脑屏障功能改变,最终导致高能量需求神经元中的线粒体功能障碍。更好地了解蓝肽代谢与神经系统之间的相互作用对于靶向或预防神经退行性疾病至关重要。