Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
J Chem Phys. 2019 Dec 21;151(23):234102. doi: 10.1063/1.5127856.
One of the most accurate methods for solving the time-dependent Schrödinger equation uses a combination of the dynamic Fourier method with the split-operator algorithm on a tensor-product grid. To reduce the number of required grid points, we let the grid move together with the wavepacket but find that the naïve algorithm based on an alternate evolution of the wavefunction and grid destroys the time reversibility of the exact evolution. Yet, we show that the time reversibility is recovered if the wavefunction and grid are evolved simultaneously during each kinetic or potential step; this is achieved by using the Ehrenfest theorem together with the splitting method. The proposed algorithm is conditionally stable, symmetric, and time-reversible and conserves the norm of the wavefunction. The preservation of these geometric properties is shown analytically and demonstrated numerically on a three-dimensional harmonic model and collinear model of He-H scattering. We also show that the proposed algorithm can be symmetrically composed to obtain time-reversible integrators of an arbitrary even order. We observed 10 000-fold speedup by using the tenth-order instead of the second-order method to obtain a solution with a time discretization error below 10. Moreover, using the adaptive grid instead of the fixed grid resulted in a 64-fold reduction in the required number of grid points in the harmonic system and made it possible to simulate the He-H scattering for six times longer while maintaining reasonable accuracy. Applicability of the algorithm to high-dimensional quantum dynamics is demonstrated using the strongly anharmonic eight-dimensional Hénon-Heiles model.
解决含时薛定谔方程最精确的方法之一是在张量积网格上结合动态傅里叶方法和分裂算符算法。为了减少所需网格点的数量,我们让网格随波包一起移动,但发现基于波函数和网格交替演化的简单算法破坏了精确演化的时间可逆性。然而,我们表明,如果在每个动力学或势能步骤中同时演化波函数和网格,则可以恢复时间可逆性;这是通过使用 Ehrenfest 定理和分裂方法来实现的。所提出的算法是条件稳定的、对称的和时间可逆的,并保持波函数的范数。这些几何性质的保持在三维谐振子模型和氦氖散射共线模型上进行了分析和数值验证。我们还表明,可以通过对称组合该算法来获得任意偶数阶的时间可逆积分器。通过使用第十阶方法而不是二阶方法来获得时间离散化误差低于 10 的解,我们实现了 10000 倍的加速。此外,使用自适应网格而不是固定网格可以将谐振子系统中所需的网格点数减少 64 倍,并可以在保持合理精度的同时将氦氖散射模拟延长六倍。该算法对高维量子动力学的适用性通过强烈非谐的八维 Hénon-Heiles 模型得到了证明。