Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénieries Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
J Chem Phys. 2021 Nov 28;155(20):204109. doi: 10.1063/5.0071153.
The explicit split-operator algorithm is often used for solving the linear and nonlinear time-dependent Schrödinger equations. However, when applied to certain nonlinear time-dependent Schrödinger equations, this algorithm loses time reversibility and second-order accuracy, which makes it very inefficient. Here, we propose to overcome the limitations of the explicit split-operator algorithm by abandoning its explicit nature. We describe a family of high-order implicit split-operator algorithms that are norm-conserving, time-reversible, and very efficient. The geometric properties of the integrators are proven analytically and demonstrated numerically on the local control of a two-dimensional model of retinal. Although they are only applicable to separable Hamiltonians, the implicit split-operator algorithms are, in this setting, more efficient than the recently proposed integrators based on the implicit midpoint method.
显式分裂算符算法常用于求解线性和非线性含时薛定谔方程。然而,当应用于某些非线性含时薛定谔方程时,该算法会失去时间反演性和二阶精度,这使得其效率非常低。在这里,我们通过放弃其显式特性来克服显式分裂算符算法的局限性。我们描述了一类高阶隐式分裂算符算法,它们具有范数守恒、时间可逆和非常高效的特点。积分器的几何性质通过解析方法进行了证明,并在视网膜二维模型的局部控制上进行了数值演示。尽管它们仅适用于可分离哈密顿量,但在这种情况下,隐式分裂算符算法比最近提出的基于隐式中点法的积分器更有效。