Zhang Zhan Tong, Vaníček Jiří J L
Laboratory of Theoretical Physical Chemistry, Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
J Chem Phys. 2024 Feb 28;160(8). doi: 10.1063/5.0187823.
We present a numerically exact approach for evaluating vibrationally resolved electronic spectra at finite temperatures using the coherence thermofield dynamics. In this method, which avoids implementing an algorithm for solving the von Neumann equation for coherence, the thermal vibrational ensemble is first mapped to a pure-state wavepacket in an augmented space, and this wavepacket is then propagated by solving the standard, zero-temperature Schrödinger equation with the split-operator Fourier method. We show that the finite-temperature spectra obtained with the coherence thermofield dynamics in a Morse potential agree exactly with those computed by Boltzmann-averaging the spectra of individual vibrational levels. Because the split-operator thermofield dynamics on a full tensor-product grid is restricted to low-dimensional systems, we briefly discuss how the accessible dimensionality can be increased by various techniques developed for the zero-temperature split-operator Fourier method.
我们提出了一种数值精确的方法,用于使用相干热场动力学在有限温度下评估振动分辨的电子光谱。在这种方法中,避免了为求解相干的冯·诺依曼方程而实现算法,首先将热振动系综映射到一个扩展空间中的纯态波包,然后通过用分裂算符傅里叶方法求解标准的零温度薛定谔方程来传播这个波包。我们表明,在莫尔斯势中用相干热场动力学获得的有限温度光谱与通过对各个振动能级的光谱进行玻尔兹曼平均计算得到的光谱完全一致。由于全张量积网格上的分裂算符热场动力学仅限于低维系统,我们简要讨论了如何通过为零温度分裂算符傅里叶方法开发的各种技术来提高可处理的维度。