Suppr超能文献

一种分析心血管流动中壁切应力固定点和流形的欧拉方法。

A Eulerian method to analyze wall shear stress fixed points and manifolds in cardiovascular flows.

机构信息

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.

PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy.

出版信息

Biomech Model Mechanobiol. 2020 Oct;19(5):1403-1423. doi: 10.1007/s10237-019-01278-3. Epub 2019 Dec 21.

Abstract

Based upon dynamical systems theory, a fixed point of a vector field such as the wall shear stress (WSS) at the luminal surface of a vessel is a point where the vector field vanishes. Unstable/stable manifolds identify contraction/expansion regions linking fixed points. The significance of such WSS topological features lies in their strong link with "disturbed" flow features like flow stagnation, separation and reversal, deemed responsible for vascular dysfunction initiation and progression. Here, we present a Eulerian method to analyze WSS topological skeleton through the identification and classification of WSS fixed points and manifolds in complex vascular geometries. The method rests on the volume contraction theory and analyzes the WSS topological skeleton through the WSS vector field divergence and Poincar[Formula: see text] index. The method is here applied to computational hemodynamics models of carotid bifurcation and intracranial aneurysm. An in-depth analysis of the time dependence of the WSS topological skeleton along the cardiac cycle is provided, enriching the information obtained from cycle-average WSS. Among the main findings, it emerges that on the carotid bifurcation, instantaneous WSS fixed points co-localize with cycle-average WSS fixed points for a fraction of the cardiac cycle ranging from 0 to [Formula: see text]; a persistent instantaneous WSS fixed point confined on the aneurysm dome does not co-localize with the cycle-average low-WSS region. In conclusion, the here presented approach shows the potential to speed up studies on the physiological significance of WSS topological skeleton in cardiovascular flows, ultimately increasing the chance of finding mechanistic explanations to clinical observations.

摘要

基于动力系统理论,向量场(如血管内腔表面的壁切应力 (WSS))的不动点是向量场为零的点。不稳定/稳定流形确定连接不动点的收缩/扩张区域。这种 WSS 拓扑特征的意义在于它们与“扰动”流特征(如流动停滞、分离和反转)密切相关,这些特征被认为是血管功能障碍起始和进展的原因。在这里,我们提出了一种欧拉方法,通过识别和分类复杂血管几何形状中的 WSS 不动点和流形来分析 WSS 拓扑骨架。该方法基于体积收缩理论,通过 WSS 向量场散度和 Poincaré-Hopf 指数分析 WSS 拓扑骨架。该方法应用于颈动脉分叉和颅内动脉瘤的计算血液动力学模型。沿着心脏周期提供了 WSS 拓扑骨架的时间依赖性的深入分析,丰富了从循环平均 WSS 获得的信息。主要发现之一是,在颈动脉分叉处,瞬时 WSS 不动点与循环平均 WSS 不动点在心脏周期的一部分(范围为 0 到 [Formula: see text])中重合;在动脉瘤穹顶上的一个持续的瞬时 WSS 不动点与循环平均低 WSS 区域不重合。总之,这里提出的方法显示出加速研究心血管流动中 WSS 拓扑骨架的生理意义的潜力,最终增加了找到对临床观察的机制解释的机会。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验