Suppr超能文献

噪声可以加速马尔可夫链蒙特卡罗估计和量子退火。

Noise can speed Markov chain Monte Carlo estimation and quantum annealing.

机构信息

Center for Quantum Information Science and Technology, Signal and Image Processing Institute, Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, USA.

出版信息

Phys Rev E. 2019 Nov;100(5-1):053309. doi: 10.1103/PhysRevE.100.053309.

Abstract

Carefully injected noise can speed the average convergence of Markov chain Monte Carlo (MCMC) estimates and simulated annealing optimization. This includes quantum annealing and the MCMC special case of the Metropolis-Hastings algorithm. MCMC seeks the solution to a computational problem as the equilibrium probability density of a reversible Markov chain. The algorithm must cycle through a long burn-in phase until it reaches equilibrium because the Markov samples are statistically correlated. The special injected noise reduces this burn-in period in MCMC. A related theorem shows that it reduces the cooling time in simulated annealing. Simulations showed that optimal noise gave a 76% speed-up in finding the global minimum in the Schwefel optimization benchmark. The noise-boosted simulations found the global minimum in 99.8% of trials compared with only 95.4% of trials in noiseless simulated annealing. Simulations also showed that the noise boost is robust to accelerated cooling schedules and that noise decreased convergence times by more than 32% under aggressive geometric cooling. Molecular dynamics simulations showed that optimal noise gave a 42% speed-up in finding the minimum potential energy configuration of an eight-argon-atom gas system with a Lennard-Jones 12-6 potential. The annealing speed-up also extends to quantum Monte Carlo implementations of quantum annealing. Noise improved ground-state energy estimates in a 1024-spin simulated quantum annealing simulation by 25.6%. The quantum noise flips spins along a Trotter ring. The noisy MCMC algorithm brings each Markov step closer on average to equilibrium if an inequality holds between two expectations. Gaussian or Cauchy jump probabilities reduce the noise-benefit inequality to a simple quadratic inequality. Simulations show that noise-boosted simulated annealing is more likely than noiseless annealing to sample high probability regions of the search space and to accept solutions that increase the search breadth.

摘要

精心注入的噪声可以加速马尔可夫链蒙特卡罗(MCMC)估计和模拟退火优化的平均收敛速度。这包括量子退火和 Metropolis-Hastings 算法的 MCMC 特例。MCMC 寻求计算问题的解决方案,作为可逆马尔可夫链的平衡概率密度。由于马尔可夫样本在统计上是相关的,因此算法必须经过一个长的预热阶段,直到达到平衡,因为 MCMC 样本在统计上是相关的。特殊的注入噪声减少了 MCMC 的预热期。一个相关的定理表明,它减少了模拟退火中的冷却时间。模拟表明,在 Schwefel 优化基准测试中,最佳噪声使全局最小值的搜索速度提高了 76%。与无噪声模拟退火相比,噪声增强的模拟在 99.8%的试验中找到了全局最小值,而只有 95.4%的试验找到了全局最小值。模拟还表明,噪声增强对加速冷却方案具有鲁棒性,并且在激进的几何冷却下,噪声使收敛时间缩短了 32%以上。分子动力学模拟表明,对于具有 Lennard-Jones 12-6 势能的八氩原子气体系统的最小势能构型,最佳噪声使搜索速度提高了 42%。退火加速也扩展到量子蒙特卡罗的量子退火实现。噪声通过 25.6%提高了具有 1024 个自旋的模拟量子退火模拟中的基态能量估计。量子噪声沿着 Trotter 环翻转自旋。如果两个期望之间存在一个不等式,那么嘈杂的 MCMC 算法会使每个马尔可夫步骤平均更接近平衡。高斯或柯西跳跃概率将噪声效益不等式简化为一个简单的二次不等式。模拟表明,与无噪声退火相比,噪声增强的模拟退火更有可能在搜索空间的高概率区域采样,并接受增加搜索宽度的解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验