Suppr超能文献

轴对称达西流的界面动力学和挤缩奇点。

Interfacial dynamics and pinch-off singularities for axially symmetric Darcy flow.

机构信息

School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland 4001, Australia.

School of Computing, Electronics and Mathematics, Coventry University, Coventry CV1 5FB, United Kingdom.

出版信息

Phys Rev E. 2019 Nov;100(5-1):053109. doi: 10.1103/PhysRevE.100.053109.

Abstract

We study a model for the evolution of an axially symmetric bubble of inviscid fluid in a homogeneous porous medium otherwise saturated with a viscous fluid. The model is a moving boundary problem that is a higher-dimensional analog of Hele-Shaw flow. Here we are concerned with the development of pinch-off singularities characterized by a blowup of the interface curvature and the bubble subsequently breaking up into two; these singularities do not occur in the corresponding two-dimensional Hele-Shaw problem. By applying a numerical scheme based on the level set method, we show that solutions to our problem can undergo pinch-off in various geometries. A similarity analysis suggests that the minimum radius behaves as a power law in time with exponent α=1/3 just before and after pinch-off has occurred, regardless of the initial conditions; our numerical results support this prediction. Further, we apply our numerical scheme to simulate the time-dependent development and translation of axially symmetric Saffman-Taylor fingers and Taylor-Saffman bubbles in a cylindrical tube, highlighting key similarities and differences with the well-studied two-dimensional cases.

摘要

我们研究了一个轴对称粘性流泡在均匀多孔介质中演化的模型,该介质中其他部分充满了粘性流体。该模型是一个运动边界问题,是赫勒-肖沃流的高维类比。在这里,我们关注的是由界面曲率急剧增加导致的收缩点奇异性的发展,以及随后气泡分裂成两个气泡;这些奇点在相应的二维赫勒-肖沃问题中不会发生。通过应用基于水平集方法的数值方案,我们表明我们的问题的解可以在各种几何形状下发生收缩。相似性分析表明,在收缩前后,最小半径随时间呈幂律变化,指数α=1/3,与初始条件无关;我们的数值结果支持这一预测。此外,我们应用数值方案模拟轴对称 Saffman-Taylor 指和 Taylor-Saffman 泡在圆柱管中的时变发展和迁移,突出了与二维情况的关键相似性和差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验