Division of Applied and Computational Mathematics, Beijing Computational Science Research Center, Beijing 100193, China.
Department of Mathematics, Wayne State University, Detroit, Michigan 48202, USA.
Phys Rev E. 2019 Nov;100(5-1):052406. doi: 10.1103/PhysRevE.100.052406.
Here we investigate single-cell stochastic gene expression kinetics in a minimal coupled gene circuit with positive-plus-negative feedback. A triphasic stochastic bifurcation is observed upon increasing the ratio of the positive and negative feedback strengths, which reveals a strong synergistic interaction between positive and negative feedback loops. We discover that coupled positive-plus-negative feedback amplifies gene expression mean but reduces gene expression noise over a wide range of feedback strengths when promoter switching is relatively slow, stabilizing gene expression around a relatively high level. In addition, we study two types of macroscopic limits of the discrete chemical master equation model: the Kurtz limit applies to proteins with large burst frequencies and the Lévy limit applies to proteins with large burst sizes. We derive the analytic steady-state distributions of the protein abundance in a coupled gene circuit for both the discrete model and its two macroscopic limits, generalizing the results obtained by Liu et al. [Chaos 26, 043108 (2016)CHAOEH1054-150010.1063/1.4947202]. We also obtain the analytic time-dependent protein distribution for the classical Friedman-Cai-Xie random bursting model [Friedman, Cai, and Xie, Phys. Rev. Lett. 97, 168302 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.168302]. Our analytic results are further applied to study the structure of gene expression noise in a coupled gene circuit, and a complete decomposition of noise in terms of five different biophysical origins is provided.
在这里,我们研究了具有正反馈加负反馈的最小耦合基因电路中单细胞随机基因表达动力学。当增加正反馈和负反馈强度的比值时,观察到三阶段随机分岔,这揭示了正反馈和负反馈回路之间的强烈协同作用。我们发现,当启动子转换相对较慢时,耦合的正反馈加负反馈会放大基因表达的均值,但会降低基因表达的噪声,从而将基因表达稳定在相对较高的水平。此外,我们研究了离散化学主方程模型的两种宏观极限:Kurtz 极限适用于具有较大爆发频率的蛋白质,Lévy 极限适用于具有较大爆发大小的蛋白质。我们推导出了耦合基因电路中离散模型及其两种宏观极限的蛋白质丰度的解析稳态分布,推广了 Liu 等人[Chaos 26, 043108 (2016)CHAOEH1054-150010.1063/1.4947202]的结果。我们还为经典的 Friedman-Cai-Xie 随机爆发模型[Friedman、Cai 和 Xie, Phys. Rev. Lett. 97, 168302 (2006)PRLTAO0031-900710.1103/PhysRevLett.97.168302]获得了解析的时变蛋白质分布。我们的解析结果进一步应用于研究耦合基因电路中基因表达噪声的结构,并提供了噪声在五个不同生物物理起源方面的完全分解。