Riecke Thomas V, Sedinger Benjamin S, Williams Perry J, Leach Alan G, Sedinger James S
Program in Ecology, Evolution, and Conservation Biology University of Nevada Reno Nevada.
Department of Natural Resources and Environmental Science University of Nevada Reno Nevada.
Ecol Evol. 2019 Nov 21;9(23):13521-13531. doi: 10.1002/ece3.5809. eCollection 2019 Dec.
Estimating correlations among demographic parameters is critical to understanding population dynamics and life-history evolution, where correlations among parameters can inform our understanding of life-history trade-offs, result in effective applied conservation actions, and shed light on evolutionary ecology. The most common approaches rely on the multivariate normal distribution, and its conjugate inverse Wishart prior distribution. However, the inverse Wishart prior for the covariance matrix of multivariate normal distributions has a strong influence on posterior distributions. As an alternative to the inverse Wishart distribution, we individually parameterize the covariance matrix of a multivariate normal distribution to accurately estimate variances ( ) of, and process correlations () between, demographic parameters. We evaluate this approach using simulated capture-mark-recapture data. We then use this method to examine process correlations between adult and juvenile survival of black brent geese marked on the Yukon-Kuskokwim River Delta, Alaska (1988-2014). Our parameterization consistently outperformed the conjugate inverse Wishart prior for simulated data, where the means of posterior distributions estimated using an inverse Wishart prior were substantially different from the values used to simulate the data. Brent adult and juvenile annual apparent survival rates were strongly positively correlated ( = 0.563, 95% CRI 0.181-0.823), suggesting that habitat conditions have significant effects on both adult and juvenile survival. We provide robust simulation tools, and our methods can readily be expanded for use in other capture-recapture or capture-recovery frameworks. Further, our work reveals limits on the utility of these approaches when study duration or sample sizes are small.
估计人口统计学参数之间的相关性对于理解种群动态和生活史进化至关重要,其中参数之间的相关性可以帮助我们理解生活史权衡,产生有效的应用保护行动,并阐明进化生态学。最常见的方法依赖于多元正态分布及其共轭逆威沙特先验分布。然而,多元正态分布协方差矩阵的逆威沙特先验对后验分布有很大影响。作为逆威沙特分布的替代方法,我们对多元正态分布的协方差矩阵进行单独参数化,以准确估计人口统计学参数的方差( )以及它们之间的过程相关性( )。我们使用模拟的标记重捕数据评估这种方法。然后,我们使用这种方法研究在阿拉斯加育空-库斯科基姆河三角洲(1988 - 2014年)标记的黑布伦特鹅成年个体和幼年个体存活率之间的过程相关性。对于模拟数据,我们的参数化方法始终优于共轭逆威沙特先验,使用逆威沙特先验估计的后验分布均值与用于模拟数据的值有很大差异。布伦特鹅成年个体和幼年个体的年度表观存活率呈强正相关( = 0.563,95% CRI 0.181 - 0.823),这表明栖息地条件对成年个体和幼年个体的存活都有显著影响。我们提供了强大的模拟工具,并且我们的方法可以很容易地扩展用于其他标记重捕或标记回收框架。此外,我们的工作揭示了在研究持续时间或样本量较小时这些方法的实用性限制。