Suppr超能文献

适用于标记重捕数据的贝叶斯多元层次模型的先前选择和数据要求:功效分析的必要性。

Prior choice and data requirements of Bayesian multivariate hierarchical models fit to tag-recovery data: The need for power analyses.

作者信息

Deane Cody E, Carlson Lindsay G, Cunningham Curry J, Doak Pat, Kielland Knut, Breed Greg A

机构信息

Department of Biology and Wildlife Fairbanks Alaska USA.

Department of Biology, University of Saskatchewan Saskatchewan Saskatoon Canada.

出版信息

Ecol Evol. 2023 Mar 26;13(3):e9847. doi: 10.1002/ece3.9847. eCollection 2023 Mar.

Abstract

Recent empirical studies have quantified correlation between survival and recovery by estimating these parameters as correlated random effects with hierarchical Bayesian multivariate models fit to tag-recovery data. In these applications, increasingly negative correlation between survival and recovery has been interpreted as evidence for increasingly additive harvest mortality. The power of these hierarchal models to detect nonzero correlations has rarely been evaluated, and these few studies have not focused on tag-recovery data, which is a common data type. We assessed the power of multivariate hierarchical models to detect negative correlation between annual survival and recovery. Using three priors for multivariate normal distributions, we fit hierarchical effects models to a mallard () tag-recovery data set and to simulated data with sample sizes corresponding to different levels of monitoring intensity. We also demonstrate more robust summary statistics for tag-recovery data sets than total individuals tagged. Different priors led to substantially different estimates of correlation from the mallard data. Our power analysis of simulated data indicated most prior distribution and sample size combinations could not estimate strongly negative correlation with useful precision or accuracy. Many correlation estimates spanned the available parameter space (-1,1) and underestimated the magnitude of negative correlation. Only one prior combined with our most intensive monitoring scenario provided reliable results. Underestimating the magnitude of correlation coincided with overestimating the variability of annual survival, but not annual recovery. The inadequacy of prior distributions and sample size combinations previously assumed adequate for obtaining robust inference from tag-recovery data represents a concern in the application of Bayesian hierarchical models to tag-recovery data. Our analysis approach provides a means for examining prior influence and sample size on hierarchical models fit to capture-recapture data while emphasizing transferability of results between empirical and simulation studies.

摘要

最近的实证研究通过将这些参数估计为与适用于标记重捕数据的分层贝叶斯多元模型相关的随机效应,对生存与恢复之间的相关性进行了量化。在这些应用中,生存与恢复之间日益增强的负相关性被解释为收获死亡率日益增加的证据。这些分层模型检测非零相关性的能力很少得到评估,而且这些为数不多的研究并未聚焦于标记重捕数据,而标记重捕数据是一种常见的数据类型。我们评估了多元分层模型检测年度生存与恢复之间负相关性的能力。使用多元正态分布的三种先验分布,我们将分层效应模型拟合到一个绿头鸭标记重捕数据集以及具有对应不同监测强度水平样本量的模拟数据上。我们还展示了对于标记重捕数据集而言,比标记个体总数更稳健的汇总统计量。不同的先验分布导致从绿头鸭数据得出的相关性估计有很大差异。我们对模拟数据的功效分析表明,大多数先验分布和样本量组合无法以有用的精度或准确度估计强负相关性。许多相关性估计涵盖了可用的参数空间(-1,1),并且低估了负相关性的大小。只有一种先验分布与我们最密集的监测方案相结合时才提供了可靠的结果。相关性大小的低估与年度生存率变异性的高估同时出现,但年度恢复变异性并未高估。先前假定足以从标记重捕数据获得稳健推断的先验分布和样本量组合的不足,代表了在将贝叶斯分层模型应用于标记重捕数据时的一个问题。我们的分析方法提供了一种手段,用于检验先验影响和样本量对适用于捕获再捕获数据的分层模型的影响,同时强调实证研究与模拟研究之间结果的可转移性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/38aa/10041078/ffffac3f67e3/ECE3-13-e9847-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验