Suppr超能文献

用于多环芳烃(PAHs)及其转化产物毒性当量因子(TEFs)定量构效关系(QSAR)建模的数据集。

Dataset for the quantitative structure-activity relationship (QSAR) modeling of the toxicity equivalency factors (TEFs) of PAHs and transformed PAH products.

作者信息

Gbeddy Gustav, Egodawatta Prasanna, Goonetilleke Ashantha, Ayoko Godwin, Chen Lan

机构信息

Science and Engineering Faculty, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.

Institute for Future Environments, Queensland University of Technology (QUT), GPO Box 2434, Brisbane, 4001, Queensland, Australia.

出版信息

Data Brief. 2019 Nov 20;28:104821. doi: 10.1016/j.dib.2019.104821. eCollection 2020 Feb.

Abstract

Sixteen significant physicochemical predictor variables for thirty PAHs and transformed PAH products (TPPs) were retrieved individually prior to collation from ChemSpider.com [1] whilst their corresponding toxicity equivalency factor (TEF) end-point was obtained from published articles by Bortey-Sam, Ikenaka [2] and Wei, Bandowe [3]. In order to achieve a 5:1 ratio of the number of observations to predictors which is vital for an effective quantitative structure-activity relationship (QSAR) modelling, factor analysis was used to reduce the data. Four fundamental predictors were obtained whilst the observations were found to cluster into two main groups of nitro-PAHs and other analytes. It is anticipated that the data presented here is highly relevant for future studies on the toxicity and health effects of the analytes in the environment. Secondly, the fate and distribution patterns of PAHs and TPPs are influenced by the parameters in the dataset. In this regard, studies on the behaviour patterns of these environmental pollutants require this information for a comprehensive evaluation and interpretation of results. Researchers across varied fields of environmental science and toxicology will find this dataset very useful. This data currently serves as supplementary information for the research article in the Journal of Hazardous Materials by Gbeddy, Egodawatta [4].

摘要

在从ChemSpider.com [1]收集之前,分别检索了30种多环芳烃(PAHs)和转化的多环芳烃产物(TPPs)的16个重要物理化学预测变量,同时它们相应的毒性当量因子(TEF)端点是从Bortey-Sam、Ikenaka [2]以及Wei、Bandowe [3]发表的文章中获得的。为了实现观测值与预测变量数量5:1的比例,这对于有效的定量构效关系(QSAR)建模至关重要,使用因子分析来减少数据。得到了四个基本预测变量,同时发现观测值聚集成硝基多环芳烃和其他分析物两个主要组。预计此处呈现的数据与未来关于环境中分析物的毒性和健康影响的研究高度相关。其次,多环芳烃和TPPs的归宿和分布模式受数据集中参数的影响。在这方面,对这些环境污染物行为模式的研究需要这些信息来全面评估和解释结果。环境科学和毒理学各个领域的研究人员会发现这个数据集非常有用。这些数据目前作为Gbeddy、Egodawatta [4]发表在《危险材料杂志》上的研究文章的补充信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ff1/6909136/3ad3c77c379b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验