Suppr超能文献

拉曼光谱学作为一种非侵入性的子宫内膜异位症诊断技术。

Raman spectroscopy as a non-invasive diagnostic technique for endometriosis.

机构信息

Bogazici University, Physics Department, Istanbul, 34470, Turkey.

Esenler Maternity and Children's Hospital Obstetrics and Gynecology Department, Istanbul, 34230, Turkey.

出版信息

Sci Rep. 2019 Dec 24;9(1):19795. doi: 10.1038/s41598-019-56308-y.

Abstract

Endometriosis is a condition in which the endometrium, the layer of tissue that usually covers the inside of the uterus, grows outside the uterus. One of its severe effects is sub-fertility. The exact reason for endometriosis is still unknown and under investigation. Tracking the symptoms is not sufficient for diagnosing the disease. A successful diagnosis can only be made using laparoscopy. During the disease, the amount of some molecules (i.e., proteins, antigens) changes in the blood. Raman spectroscopy provides information about biochemicals without using dyes or external labels. In this study, Raman spectroscopy is used as a non-invasive diagnostic method for endometriosis. The Raman spectra of 94 serum samples acquired from 49 patients and 45 healthy individuals were compared for this study. Principal Component Analysis (PCA), k- Nearest Neighbors (kNN), and Support Vector Machines (SVM) were used in the analysis. According to the results (using 80 measurements for training and 14 measurements for the test set), it was found that kNN-weighted gave the best classification model with sensitivity and specificity values of 80.5% and 89.7%, respectively. Testing the model with unseen data yielded a sensitivity value of 100% and a specificity value of 100%. To the best of our knowledge, this is the first study in which Raman spectroscopy was used in combination with PCA and classification algorithms as a non-invasive method applied on blood sera for the diagnosis of endometriosis.

摘要

子宫内膜异位症是一种子宫内膜组织(通常覆盖子宫内部的组织)生长在子宫外部的疾病。其严重影响之一是生育能力下降。子宫内膜异位症的确切原因仍不清楚,正在研究中。跟踪症状不足以诊断疾病。只有通过腹腔镜检查才能做出明确诊断。在疾病期间,血液中一些分子(即蛋白质、抗原)的数量会发生变化。拉曼光谱技术无需使用染料或外部标签即可提供关于生物化学物质的信息。在这项研究中,拉曼光谱技术被用作子宫内膜异位症的非侵入性诊断方法。本研究比较了 49 名患者和 45 名健康个体的 94 份血清样本的拉曼光谱。本研究中使用了主成分分析(PCA)、k-最近邻(kNN)和支持向量机(SVM)进行分析。根据结果(使用 80 次测量进行训练和 14 次测量进行测试集),发现 kNN 加权给出了最佳的分类模型,其敏感性和特异性值分别为 80.5%和 89.7%。使用未见数据测试模型得到的敏感性值为 100%,特异性值为 100%。据我们所知,这是第一项将拉曼光谱与 PCA 和分类算法结合使用,作为一种应用于血清的非侵入性方法来诊断子宫内膜异位症的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b1c7/6930314/93e1e1a10e61/41598_2019_56308_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验