Suppr超能文献

评估炎症血清参数作为子宫内膜异位症患者的诊断工具:一项病例对照研究。

Evaluation of inflammatory serum parameters as a diagnostic tool in patients with endometriosis: a case-control study.

作者信息

Kasoha Mariz, Sklavounos Panagiotis, Molnar Istvan, Nigdelis Meletios P, Haj Hamoud Bashar, Solomayer Erich-Franz, Klamminger Gilbert Georg

机构信息

Department of Gynecology and Obstetrics, Saarland University Medical Center (UKS), Homburg, Germany.

Department of Obstetrics and Gynecology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstraße 1, 55131, Mainz, Germany.

出版信息

Sci Rep. 2025 Jun 20;15(1):20172. doi: 10.1038/s41598-025-05719-1.

Abstract

Even though non-invasive prediction of endometriosis may seem technically feasible using sophisticated machine learning algorithms, a standard clinical use case for non-surgical diagnosis of endometriosis has not yet been established. In the present paper, we assess the potential of the inflammatory serum markers hepcidin, soluble urokinase-type plasminogen activator receptor (suPar), and interleukin-6 (IL-6) in a cohort of 87 patients. Hereby, 59 patients were histologically diagnosed with endometriosis, whereas other 28 patients served as our non-endometriosis control group. An initial exploratory univariate statistical analysis (Mann-Whitney test) revealed the diagnostic potential of different serum levels of suPar (p = 0.024) and IL-6 (p < 0.001) between both groups; the formation of a distinct training data set (n = 77) subsequently allowed to train a supervised machine learning analysis (tree classifier) employing serum levels of suPar, hepcidin, and IL-6 as predictor variables. Based on an internal 5-fold cross validation, the classifier performance was initially assessed using standard metrics such as sensitivity, positive predictive value, and AUROC curve. Additionally, the algorithm was tested on an external validation (holdout) data set (n = 10), showing sufficient overall accuracy of 80% without tendencies of overfitting. In conclusion, our data demonstrates the diagnostic potential of IL-6 and suPar as pro-inflammatory serum biomarkers in endometriosis. Using a decision tree-based supervised learning approach, we additionally present a straight-forward way of a potential clinical employment, aiming at less invasive (non-surgical) diagnosis.

摘要

尽管使用复杂的机器学习算法对子宫内膜异位症进行非侵入性预测在技术上似乎可行,但子宫内膜异位症非手术诊断的标准临床用例尚未确立。在本文中,我们评估了炎症血清标志物铁调素、可溶性尿激酶型纤溶酶原激活物受体(suPar)和白细胞介素-6(IL-6)在87例患者队列中的潜力。其中,59例患者经组织学诊断为子宫内膜异位症,另外28例患者作为我们的非子宫内膜异位症对照组。初步的探索性单变量统计分析(曼-惠特尼检验)揭示了两组之间不同血清水平的suPar(p = 0.024)和IL-6(p < 0.001)的诊断潜力;随后形成一个独特的训练数据集(n = 77),用于训练以suPar、铁调素和IL-6的血清水平作为预测变量的监督机器学习分析(树分类器)。基于内部5折交叉验证,最初使用灵敏度、阳性预测值和AUROC曲线等标准指标评估分类器性能。此外,该算法在外部验证(留出法)数据集(n = 10)上进行了测试,显示出80%的足够总体准确率,且无过拟合倾向。总之,我们的数据证明了IL-6和suPar作为子宫内膜异位症促炎血清生物标志物的诊断潜力。通过基于决策树的监督学习方法,我们还提出了一种潜在临床应用的直接方法,旨在实现侵入性较小(非手术)的诊断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e1c5/12181322/9625d312a907/41598_2025_5719_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验