Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Exeter, UK.
School of Physiology, Pharmacology and Neuroscience, University of Bristol, Biomedical Sciences Building, University Walk, Bristol, UK.
Glia. 2020 Jun;68(6):1241-1254. doi: 10.1002/glia.23774. Epub 2019 Dec 27.
A role for glial cells in brain circuits controlling feeding has begun to be identified with hypothalamic astrocyte signaling implicated in regulating energy homeostasis. The nucleus of the solitary tract (NTS), within the brainstem dorsal vagal complex (DVC), integrates vagal afferent information from the viscera and plays a role in regulating food intake. We hypothesized that astrocytes in this nucleus respond to, and influence, food intake. Mice fed high-fat chow for 12 hr during the dark phase showed NTS astrocyte activation, reflected in an increase in the number (65%) and morphological complexity of glial-fibrillary acidic protein (GFAP)-immunoreactive cells adjacent to the area postrema (AP), compared to control chow fed mice. To measure the impact of astrocyte activation on food intake, we delivered designer receptors exclusively activated by designer drugs (DREADDs) to DVC astrocytes (encompassing NTS, AP, and dorsal motor nucleus of the vagus) using an adeno-associated viral (AAV) vector (AAV-GFAP-hM3Dq_mCherry). Chemogenetic activation with clozapine-N-oxide (0.3 mg/kg) produced in greater morphological complexity in astrocytes and reduced dark-phase feeding by 84% at 4 hr postinjection compared with vehicle treatment. hM3Dq-activation of DVC astrocytes also reduced refeeding after an overnight fast (71% lower, 4 hr postinjection) when compared to AAV-GFAP-mCherry expressing control mice. DREADD-mediated astrocyte activation did not impact locomotion. hM3Dq activation of DVC astrocytes induced c-FOS in neighboring neuronal feeding circuits (including in the parabrachial nucleus). This indicates that NTS astrocytes respond to acute nutritional excess, are involved in the integration of peripheral satiety signals, and can reduce food intake when activated.
胶质细胞在控制摄食的脑回路中的作用已开始被确定,其中涉及下丘脑星形胶质细胞信号在调节能量平衡中的作用。脑干背侧迷走神经复合体 (DVC) 中的孤束核 (NTS) 整合来自内脏的迷走传入信息,并在调节食物摄入方面发挥作用。我们假设该核中的星形胶质细胞对食物摄入有反应并产生影响。在黑暗期内用高脂肪食物喂养 12 小时的小鼠表现出 NTS 星形胶质细胞激活,反映在靠近后极(AP)的胶质纤维酸性蛋白(GFAP)-免疫反应细胞的数量(增加 65%)和形态复杂性增加与对照食物喂养的小鼠相比。为了测量星形胶质细胞激活对食物摄入的影响,我们使用腺相关病毒(AAV)载体(AAV-GFAP-hM3Dq_mCherry)将 Designer Receptors Exclusively Activated by Designer Drugs(DREADDs)递送到 DVC 星形胶质细胞(包括 NTS、AP 和迷走神经背核)。用氯氮平-N-氧化物(0.3 mg/kg)进行化学遗传激活导致星形胶质细胞的形态复杂性增加,并与载体处理相比,在注射后 4 小时减少了 84%的黑暗期摄食。与表达 AAV-GFAP-mCherry 的对照小鼠相比,DVC 星形胶质细胞的 hM3Dq 激活也减少了夜间禁食后的再摄食(注射后 4 小时降低 71%)。DREADD 介导的星形胶质细胞激活不会影响运动。DVC 星形胶质细胞的 hM3Dq 激活诱导邻近神经元进食回路(包括臂旁核)中的 c-FOS。这表明 NTS 星形胶质细胞对急性营养过剩有反应,参与整合外周饱腹感信号,并在激活时减少食物摄入。