Suppr超能文献

无监督深度域适应研究

A Survey of Unsupervised Deep Domain Adaptation.

作者信息

Wilson Garrett, Cook Diane J

机构信息

Washington State University, USA.

出版信息

ACM Trans Intell Syst Technol. 2020 Sep;11(5):1-46. doi: 10.1145/3400066. Epub 2020 Jul 5.

Abstract

Deep learning has produced state-of-the-art results for a variety of tasks. While such approaches for supervised learning have performed well, they assume that training and testing data are drawn from the same distribution, which may not always be the case. As a complement to this challenge, single-source unsupervised domain adaptation can handle situations where a network is trained on labeled data from a source domain and unlabeled data from a related but different target domain with the goal of performing well at test-time on the target domain. Many single-source and typically homogeneous unsupervised deep domain adaptation approaches have thus been developed, combining the powerful, hierarchical representations from deep learning with domain adaptation to reduce reliance on potentially-costly target data labels. This survey will compare these approaches by examining alternative methods, the unique and common elements, results, and theoretical insights. We follow this with a look at application areas and open research directions.

摘要

深度学习在各种任务中都取得了领先的成果。虽然这种监督学习方法表现良好,但它们假设训练数据和测试数据来自相同的分布,而实际情况可能并非总是如此。作为应对这一挑战的补充,单源无监督域适应可以处理这样的情况:网络在源域的标记数据和相关但不同的目标域的未标记数据上进行训练,目标是在测试时在目标域上表现良好。因此,许多单源且通常是同类的无监督深度域适应方法已经被开发出来,将深度学习强大的分层表示与域适应相结合,以减少对潜在成本高昂的目标数据标签的依赖。本综述将通过研究替代方法、独特和共同要素、结果以及理论见解来比较这些方法。接下来,我们将探讨应用领域和开放的研究方向。

相似文献

1
A Survey of Unsupervised Deep Domain Adaptation.无监督深度域适应研究
ACM Trans Intell Syst Technol. 2020 Sep;11(5):1-46. doi: 10.1145/3400066. Epub 2020 Jul 5.
5
6
Reducing bias to source samples for unsupervised domain adaptation.减少无监督域自适应中源样本的偏差。
Neural Netw. 2021 Sep;141:61-71. doi: 10.1016/j.neunet.2021.03.021. Epub 2021 Mar 26.
8
Inferring Latent Domains for Unsupervised Deep Domain Adaptation.无监督深度域自适应的潜在域推断。
IEEE Trans Pattern Anal Mach Intell. 2021 Feb;43(2):485-498. doi: 10.1109/TPAMI.2019.2933829. Epub 2021 Jan 8.
9
A Review of Single-Source Deep Unsupervised Visual Domain Adaptation.单源深度无监督视觉域自适应综述。
IEEE Trans Neural Netw Learn Syst. 2022 Feb;33(2):473-493. doi: 10.1109/TNNLS.2020.3028503. Epub 2022 Feb 3.

引用本文的文献

本文引用的文献

1
Geometry-Consistent Generative Adversarial Networks for One-Sided Unsupervised Domain Mapping.用于单边无监督域映射的几何一致生成对抗网络
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2019 Jun;2019:2422-2431. doi: 10.1109/cvpr.2019.00253. Epub 2020 Jan 9.
4
Self-Paced Collaborative and Adversarial Network for Unsupervised Domain Adaptation.自定步幅协作与对抗网络的无监督域自适应。
IEEE Trans Pattern Anal Mach Intell. 2021 Jun;43(6):2047-2061. doi: 10.1109/TPAMI.2019.2962476. Epub 2021 May 11.
6
Heterogeneous Domain Adaptation Through Progressive Alignment.通过渐进对齐实现异构域适应
IEEE Trans Neural Netw Learn Syst. 2019 May;30(5):1381-1391. doi: 10.1109/TNNLS.2018.2868854. Epub 2018 Sep 27.
8
Beyond Sharing Weights for Deep Domain Adaptation.超越深度域适应中的权重共享
IEEE Trans Pattern Anal Mach Intell. 2019 Apr;41(4):801-814. doi: 10.1109/TPAMI.2018.2814042. Epub 2018 Mar 8.
10
VIGAN: Missing View Imputation with Generative Adversarial Networks.VIGAN:使用生成对抗网络进行缺失视图插补
Proc IEEE Int Conf Big Data. 2017;2017:766-775. doi: 10.1109/BigData.2017.8257992. Epub 2018 Jan 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验