Suppr超能文献

外排泵和环境 pH 在细菌多重耐药性中的作用。

The Role of Efflux Pumps and Environmental pH in Bacterial Multidrug Resistance.

机构信息

Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, Szeged, Hungary.

Travel Medicine, Institute of Hygiene and Tropical Medicine, Universidade Nova de Lisboa, Lisbon, Portugal.

出版信息

In Vivo. 2020 Jan-Feb;34(1):65-71. doi: 10.21873/invivo.11746.

Abstract

BACKGROUND/AIM: One of the most studied bacterial resistance mechanisms is the resistance related to multidrug efflux pumps. In our study the pump activity of the Escherichia coli K-12 AG100 strain expressing the AcrAB-TolC pump system was investigated at pH 7 and pH 5 in the presence of the efflux pump inhibitor (EPI) promethazine (PMZ).

MATERIALS AND METHODS

The EPI activity was assessed by real-time fluorimetry. The influence of PMZ treatment on the relative expression of the pump genes acrA, acrB and their regulators marA, marB, marR, the stress genes soxS, rob, as well as the bacterial growth control genes ftsI, and sdiA were determined by RT-qPCR.

RESULTS

The EPI activity of PMZ was more effective at neutral pH. The PMZ treatment induced a significant stress response in the bacterium at acidic pH by the up-regulation of genes.

CONCLUSION

The genetic system that regulates the activity of the main efflux pump is pH-dependent.

摘要

背景/目的:研究最多的细菌耐药机制之一是与多药外排泵相关的耐药性。在本研究中,在 pH 值为 7 和 pH 值为 5 的条件下,研究了表达 AcrAB-TolC 泵系统的大肠杆菌 K-12 AG100 菌株的泵活性,并检测了外排泵抑制剂(EPI)异丙嗪(PMZ)的作用。

材料和方法

通过实时荧光法评估 EPI 活性。通过 RT-qPCR 确定 PMZ 处理对泵基因 acrA、acrB 及其调节剂 marA、marB、marR、应激基因 soxS、rob 以及细菌生长控制基因 ftsI 和 sdiA 的相对表达的影响。

结果

EPI 的 PMZ 活性在中性 pH 值下更为有效。在酸性 pH 值下,PMZ 处理通过上调基因诱导细菌产生显著的应激反应。

结论

调节主要外排泵活性的遗传系统依赖于 pH 值。

相似文献

1
The Role of Efflux Pumps and Environmental pH in Bacterial Multidrug Resistance.
In Vivo. 2020 Jan-Feb;34(1):65-71. doi: 10.21873/invivo.11746.
3
4
Upregulation of AcrEF in Quinolone Resistance Development in Escherichia coli When AcrAB-TolC Function Is Impaired.
Microb Drug Resist. 2018 Jan/Feb;24(1):18-23. doi: 10.1089/mdr.2016.0207. Epub 2017 May 18.
6
Fitness trade-offs of multidrug efflux pumps in K-12 in acid or base, and with aromatic phytochemicals.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0209623. doi: 10.1128/aem.02096-23. Epub 2024 Jan 30.
7
Effect of concentration gradient carbapenem exposure on expression of bla and acrA in carbapenem resistant Escherichia coli.
Infect Genet Evol. 2019 Sep;73:332-336. doi: 10.1016/j.meegid.2019.05.024. Epub 2019 Jun 3.
8
Regulation of acrAB expression by cellular metabolites in Escherichia coli.
J Antimicrob Chemother. 2014 Feb;69(2):390-9. doi: 10.1093/jac/dkt352. Epub 2013 Sep 15.
10
Many chromosomal genes modulate MarA-mediated multidrug resistance in Escherichia coli.
Antimicrob Agents Chemother. 2010 May;54(5):2125-34. doi: 10.1128/AAC.01420-09. Epub 2010 Mar 8.

引用本文的文献

1
Therapeutic Mechanisms of Phenothiazine Drugs: A Mini-Review of Advances in Cancer Treatment and Antibiotic Resistance.
Iran J Pharm Res. 2025 Feb 8;24(1):e157923. doi: 10.5812/ijpr-157923. eCollection 2025 Jan-Dec.
3
Estimating the optimal efflux inhibitor concentration of carvacrol as a function of the bacterial physiological state.
Front Microbiol. 2023 Jan 25;14:1073798. doi: 10.3389/fmicb.2023.1073798. eCollection 2023.
5
Bacterial Stress Responses as Potential Targets in Overcoming Antibiotic Resistance.
Microorganisms. 2022 Jul 9;10(7):1385. doi: 10.3390/microorganisms10071385.
6
The Relationship between Antibiotic Susceptibility and pH in the Case of Uropathogenic Bacteria.
Antibiotics (Basel). 2021 Nov 23;10(12):1431. doi: 10.3390/antibiotics10121431.
7
Maximum levels of cross-contamination for 24 antimicrobial active substances in non-target feed. Part 1: .
EFSA J. 2021 Oct 26;19(10):e06852. doi: 10.2903/j.efsa.2021.6852. eCollection 2021 Oct.
8
Insights into Emergence of Antibiotic Resistance in Acid-Adapted Enterohaemorrhagic .
Antibiotics (Basel). 2021 May 2;10(5):522. doi: 10.3390/antibiotics10050522.

本文引用的文献

1
Acid-happy: Survival and recovery of enteropathogenic Escherichia coli (EPEC) in simulated gastric fluid.
Microb Pathog. 2019 Mar;128:396-404. doi: 10.1016/j.micpath.2019.01.022. Epub 2019 Jan 17.
2
The development of efflux pump inhibitors to treat Gram-negative infections.
Expert Opin Drug Discov. 2018 Oct;13(10):919-931. doi: 10.1080/17460441.2018.1514386. Epub 2018 Sep 10.
3
Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae.
Res Microbiol. 2018 Sep-Oct;169(7-8):425-431. doi: 10.1016/j.resmic.2017.10.005. Epub 2017 Nov 8.
4
Possible Biological and Clinical Applications of Phenothiazines.
Anticancer Res. 2017 Nov;37(11):5983-5993. doi: 10.21873/anticanres.12045.
5
Acid Stress Response Mechanisms of Group B Streptococci.
Front Cell Infect Microbiol. 2017 Sep 7;7:395. doi: 10.3389/fcimb.2017.00395. eCollection 2017.
6
Redox-Sensitive MarR Homologue BifR from Burkholderia thailandensis Regulates Biofilm Formation.
Biochemistry. 2017 May 2;56(17):2315-2327. doi: 10.1021/acs.biochem.7b00103. Epub 2017 Apr 21.
7
An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump.
Elife. 2017 Mar 29;6:e24905. doi: 10.7554/eLife.24905.
8
Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli.
Antimicrob Agents Chemother. 2014 Dec;58(12):7250-7. doi: 10.1128/AAC.03728-14. Epub 2014 Sep 22.
9
Bacterial multidrug efflux pumps: mechanisms, physiology and pharmacological exploitations.
Biochem Biophys Res Commun. 2014 Oct 17;453(2):254-67. doi: 10.1016/j.bbrc.2014.05.090. Epub 2014 May 27.
10
MarA, SoxS and Rob of - Global regulators of multidrug resistance, virulence and stress response.
Int J Biotechnol Wellness Ind. 2013;2(3):101-124. doi: 10.6000/1927-3037.2013.02.03.2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验