Suppr超能文献

AcrAB-TolC多药外排泵的变构转运机制。

An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump.

作者信息

Wang Zhao, Fan Guizhen, Hryc Corey F, Blaza James N, Serysheva Irina I, Schmid Michael F, Chiu Wah, Luisi Ben F, Du Dijun

机构信息

National Center for Macromolecular Imaging, Baylor College of Medicine, Houston, United States.

Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, United States.

出版信息

Elife. 2017 Mar 29;6:e24905. doi: 10.7554/eLife.24905.

Abstract

Bacterial efflux pumps confer multidrug resistance by transporting diverse antibiotics from the cell. In Gram-negative bacteria, some of these pumps form multi-protein assemblies that span the cell envelope. Here, we report the near-atomic resolution cryoEM structures of the AcrAB-TolC multidrug efflux pump in resting and drug transport states, revealing a quaternary structural switch that allosterically couples and synchronizes initial ligand binding with channel opening. Within the transport-activated state, the channel remains open even though the pump cycles through three distinct conformations. Collectively, our data provide a dynamic mechanism for the assembly and operation of the AcrAB-TolC pump.

摘要

细菌外排泵通过将多种抗生素从细胞内转运出去而赋予多药耐药性。在革兰氏阴性菌中,其中一些泵形成跨越细胞包膜的多蛋白组装体。在此,我们报告了处于静息状态和药物转运状态的AcrAB-TolC多药外排泵的近原子分辨率冷冻电镜结构,揭示了一种四级结构转换,该转换通过变构作用将初始配体结合与通道开放耦合并同步。在转运激活状态下,即使泵经历三种不同的构象循环,通道仍保持开放。总体而言,我们的数据为AcrAB-TolC泵的组装和运作提供了一种动态机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c4ce/5404916/7c52f865dc58/elife-24905-fig1.jpg

相似文献

1
An allosteric transport mechanism for the AcrAB-TolC multidrug efflux pump.
Elife. 2017 Mar 29;6:e24905. doi: 10.7554/eLife.24905.
2
In situ structure of the AcrAB-TolC efflux pump at subnanometer resolution.
Structure. 2022 Jan 6;30(1):107-113.e3. doi: 10.1016/j.str.2021.08.008. Epub 2021 Sep 9.
3
Structure of the AcrAB-TolC multidrug efflux pump.
Nature. 2014 May 22;509(7501):512-5. doi: 10.1038/nature13205. Epub 2014 Apr 20.
4
In situ structure and assembly of the multidrug efflux pump AcrAB-TolC.
Nat Commun. 2019 Jun 14;10(1):2635. doi: 10.1038/s41467-019-10512-6.
5
The C-terminal domain of AcrA is essential for the assembly and function of the multidrug efflux pump AcrAB-TolC.
J Bacteriol. 2009 Jul;191(13):4365-71. doi: 10.1128/JB.00204-09. Epub 2009 May 1.
7
Role of AcrAB-TolC and Its Components in Influx-Efflux Dynamics of QAC Drugs in Revealed Using SHG Spectroscopy.
J Phys Chem Lett. 2024 Aug 8;15(31):7832-7839. doi: 10.1021/acs.jpclett.4c01189. Epub 2024 Jul 25.
8
Fitness trade-offs of multidrug efflux pumps in K-12 in acid or base, and with aromatic phytochemicals.
Appl Environ Microbiol. 2024 Feb 21;90(2):e0209623. doi: 10.1128/aem.02096-23. Epub 2024 Jan 30.
9
Lpp positions peptidoglycan at the AcrA-TolC interface in the AcrAB-TolC multidrug efflux pump.
Biophys J. 2021 Sep 21;120(18):3973-3982. doi: 10.1016/j.bpj.2021.08.016. Epub 2021 Aug 17.
10
Regulation of the AcrAB-TolC efflux pump in Enterobacteriaceae.
Res Microbiol. 2018 Sep-Oct;169(7-8):425-431. doi: 10.1016/j.resmic.2017.10.005. Epub 2017 Nov 8.

引用本文的文献

1
Colistin resistance in the era of antimicrobial resistance: challenges and strategic countermeasures.
Folia Microbiol (Praha). 2025 Sep 1. doi: 10.1007/s12223-025-01322-z.
2
Structure and assembly of the MmpL5/MmpS5 efflux transporter from Mycobacterium tuberculosis.
Nat Commun. 2025 May 29;16(1):4976. doi: 10.1038/s41467-025-60365-5.
3
RND/HAE-1 members in the Pseudomonadota phylum: exploring multidrug resistance.
Biophys Rev. 2025 Mar 7;17(2):687-699. doi: 10.1007/s12551-025-01297-8. eCollection 2025 Apr.
4
TmDet 4.0: determining membrane orientation of transmembrane proteins from 3D structure.
Nucleic Acids Res. 2025 Jul 7;53(W1):W542-W546. doi: 10.1093/nar/gkaf338.
5
Transporter excess and clustering facilitate adaptor protein shuttling for bacterial efflux.
Cell Rep Phys Sci. 2025 Feb 19;6(2). doi: 10.1016/j.xcrp.2025.102441. Epub 2025 Feb 12.
6
Recent Advances in Antimicrobial Resistance: Insights from as a Model Organism.
Microorganisms. 2024 Dec 31;13(1):51. doi: 10.3390/microorganisms13010051.
7
Targeting MarA N-terminal domain dynamics to prevent DNA binding.
Protein Sci. 2025 Jan;34(1):e5258. doi: 10.1002/pro.5258.
9
Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in .
mBio. 2025 Jan 8;16(1):e0322124. doi: 10.1128/mbio.03221-24. Epub 2024 Nov 26.
10
Muropeptides and muropeptide transporters impact on host immune response.
Gut Microbes. 2024 Jan-Dec;16(1):2418412. doi: 10.1080/19490976.2024.2418412. Epub 2024 Oct 22.

本文引用的文献

1
MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy.
Nat Methods. 2017 Apr;14(4):331-332. doi: 10.1038/nmeth.4193. Epub 2017 Feb 27.
2
Opening the Channel: the Two Functional Interfaces of Pseudomonas aeruginosa OpmH with the Triclosan Efflux Pump TriABC.
J Bacteriol. 2016 Nov 4;198(23):3176-3185. doi: 10.1128/JB.00535-16. Print 2016 Dec 1.
3
Processing of Structurally Heterogeneous Cryo-EM Data in RELION.
Methods Enzymol. 2016;579:125-57. doi: 10.1016/bs.mie.2016.04.012. Epub 2016 May 31.
4
Enhanced Efflux Activity Facilitates Drug Tolerance in Dormant Bacterial Cells.
Mol Cell. 2016 Apr 21;62(2):284-294. doi: 10.1016/j.molcel.2016.03.035.
5
Molecular basis for inhibition of AcrB multidrug efflux pump by novel and powerful pyranopyridine derivatives.
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3509-14. doi: 10.1073/pnas.1602472113. Epub 2016 Mar 14.
6
Tripartite assembly of RND multidrug efflux pumps.
Nat Commun. 2016 Feb 12;7:10731. doi: 10.1038/ncomms10731.
8
9
Gctf: Real-time CTF determination and correction.
J Struct Biol. 2016 Jan;193(1):1-12. doi: 10.1016/j.jsb.2015.11.003. Epub 2015 Nov 19.
10
Structure, mechanism and cooperation of bacterial multidrug transporters.
Curr Opin Struct Biol. 2015 Aug;33:76-91. doi: 10.1016/j.sbi.2015.07.015. Epub 2015 Aug 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验