Suppr超能文献

基于生成式长短期记忆网络的分子设计

Molecular Design with Generative Long Short-term Memory.

作者信息

Grisoni Francesca, Schneider Gisbert

机构信息

ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland.

ETH Zurich, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 4, CH-8093 Zurich, Switzerland;, Email:

出版信息

Chimia (Aarau). 2019 Dec 18;73(12):1006-1011. doi: 10.2533/chimia.2019.1006.

Abstract

Drug discovery benefits from computational models aiding the identification of new chemical matter with bespoke properties. The field of drug design has been particularly revitalized by adaptation of generative machine learning models from the field of natural language processing. These deep neural network models are trained on recognizing molecular structures and generate new molecular entities without relying on pre-determined sets of molecular building blocks and chemical transformations for virtual molecule construction. Implicit representation of chemical knowledge provides an alternative to formulating the molecular design task in terms of the established, explicit chemical vocabulary. Here, we review molecular design approaches from the field of 'artificial intelligence', focusing on instances of deep generative models, and highlight the prospective application of long short-term memory models to hit and lead finding in medicinal chemistry.

摘要

药物发现受益于计算模型,这些模型有助于识别具有定制特性的新化学物质。通过采用自然语言处理领域的生成式机器学习模型,药物设计领域尤其焕发出新的活力。这些深度神经网络模型经过训练以识别分子结构,并生成新的分子实体,而无需依赖预先确定的分子构建块集和化学转化来进行虚拟分子构建。化学知识的隐式表示为以既定的显式化学词汇来制定分子设计任务提供了一种替代方法。在这里,我们回顾了“人工智能”领域的分子设计方法,重点关注深度生成模型的实例,并强调了长短期记忆模型在药物化学中寻找活性分子和先导化合物方面的潜在应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验