文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

生成式机器学习在从头药物发现中的应用:系统评价。

Generative machine learning for de novo drug discovery: A systematic review.

机构信息

Independent researcher, United States of America.

出版信息

Comput Biol Med. 2022 Jun;145:105403. doi: 10.1016/j.compbiomed.2022.105403. Epub 2022 Mar 13.


DOI:10.1016/j.compbiomed.2022.105403
PMID:35339849
Abstract

Recent research on artificial intelligence indicates that machine learning algorithms can auto-generate novel drug-like molecules. Generative models have revolutionized de novo drug discovery, rendering the explorative process more efficient. Several model frameworks and input formats have been proposed to enhance the performance of intelligent algorithms in generative molecular design. In this systematic literature review of experimental articles and reviews over the last five years, machine learning models, challenges associated with computational molecule design along with proposed solutions, and molecular encoding methods are discussed. A query-based search of the PubMed, ScienceDirect, Springer, Wiley Online Library, arXiv, MDPI, bioRxiv, and IEEE Xplore databases yielded 87 studies. Twelve additional studies were identified via citation searching. Of the articles in which machine learning was implemented, six prominent algorithms were identified: long short-term memory recurrent neural networks (LSTM-RNNs), variational autoencoders (VAEs), generative adversarial networks (GANs), adversarial autoencoders (AAEs), evolutionary algorithms, and gated recurrent unit (GRU-RNNs). Furthermore, eight central challenges were designated: homogeneity of generated molecular libraries, deficient synthesizability, limited assay data, model interpretability, incapacity for multi-property optimization, incomparability, restricted molecule size, and uncertainty in model evaluation. Molecules were encoded either as strings, which were occasionally augmented using randomization, as 2D graphs, or as 3D graphs. Statistical analysis and visualization are performed to illustrate how approaches to machine learning in de novo drug design have evolved over the past five years. Finally, future opportunities and reservations are discussed.

摘要

最近关于人工智能的研究表明,机器学习算法可以自动生成新的类似药物的分子。生成模型彻底改变了从头药物发现,使探索过程更加高效。已经提出了几种模型框架和输入格式,以提高智能算法在生成分子设计中的性能。在过去五年的实验文章和综述的系统文献回顾中,讨论了机器学习模型、与计算分子设计相关的挑战以及提出的解决方案,以及分子编码方法。通过对 PubMed、ScienceDirect、Springer、Wiley Online Library、arXiv、MDPI、bioRxiv 和 IEEE Xplore 数据库的基于查询的搜索,共获得 87 项研究。通过引文搜索又确定了 12 项研究。在实施机器学习的文章中,确定了六个突出的算法:长短期记忆递归神经网络 (LSTM-RNN)、变分自动编码器 (VAE)、生成对抗网络 (GAN)、对抗自动编码器 (AAE)、进化算法和门控递归单元 (GRU-RNN)。此外,指定了八个核心挑战:生成分子库的同质性、合成能力不足、有限的测定数据、模型可解释性、无法进行多属性优化、不可比性、受限的分子大小和模型评估的不确定性。分子被编码为字符串,偶尔使用随机化进行扩充,也可以编码为 2D 图或 3D 图。进行统计分析和可视化,以说明过去五年中从头药物设计中机器学习方法的发展情况。最后,讨论了未来的机会和保留意见。

相似文献

[1]
Generative machine learning for de novo drug discovery: A systematic review.

Comput Biol Med. 2022-6

[2]
Accuracy of Using Generative Adversarial Networks for Glaucoma Detection: Systematic Review and Bibliometric Analysis.

J Med Internet Res. 2021-9-21

[3]
The COVID-19 epidemic analysis and diagnosis using deep learning: A systematic literature review and future directions.

Comput Biol Med. 2022-2

[4]
Machine Learning and Natural Language Processing in Mental Health: Systematic Review.

J Med Internet Res. 2021-5-4

[5]
Uses of Different Machine Learning Algorithms for Diagnosis of Dental Caries.

J Healthc Eng. 2022

[6]
Machine learning in oral squamous cell carcinoma: Current status, clinical concerns and prospects for future-A systematic review.

Artif Intell Med. 2021-5

[7]
Machine learning in knee arthroplasty: specific data are key-a systematic review.

Knee Surg Sports Traumatol Arthrosc. 2022-2

[8]
An insight into diagnosis of depression using machine learning techniques: a systematic review.

Curr Med Res Opin. 2022-5

[9]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[10]
Cost-effectiveness of using prognostic information to select women with breast cancer for adjuvant systemic therapy.

Health Technol Assess. 2006-9

引用本文的文献

[1]
Advances in Lipid-Based Nanomedicine: Pathway Specific siRNA Therapy and Optimizing Delivery for Hepatocellular Carcinoma.

Int J Nanomedicine. 2025-8-30

[2]
Targeting the TRIB3-MYC axis in cancer: mechanistic insights and therapeutic disruption strategies.

Invest New Drugs. 2025-9-4

[3]
MGMG: Cell Morphology-Guided Molecule Generation for Drug Discovery.

bioRxiv. 2025-7-17

[4]
Applications of Artificial Intelligence in Biotech Drug Discovery and Product Development.

MedComm (2020). 2025-7-30

[5]
Identification of nanomolar adenosine A receptor ligands using reinforcement learning and structure-based drug design.

Nat Commun. 2025-7-1

[6]
Scaffold Hopping with Generative Reinforcement Learning.

J Chem Inf Model. 2025-7-14

[7]
In Silico Validation of AI-Assisted Drugs in Healthcare.

Methods Mol Biol. 2025

[8]
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.

Acc Chem Res. 2025-6-17

[9]
The Role of Artificial Intelligence in Drug Discovery and Pharmaceutical Development: A Paradigm Shift in the History of Pharmaceutical Industries.

AAPS PharmSciTech. 2025-5-14

[10]
A Review of the Applications, Benefits, and Challenges of Generative AI for Sustainable Toxicology.

Curr Res Toxicol. 2025-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索