Khemchandani Yash, O'Hagan Stephen, Samanta Soumitra, Swainston Neil, Roberts Timothy J, Bollegala Danushka, Kell Douglas B
Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool, L69 7ZB, UK.
Indian Institute of Technology Bombay, Powai, Mumbai, Maharashtra, 400 076, India.
J Cheminform. 2020 Sep 4;12(1):53. doi: 10.1186/s13321-020-00454-3.
We address the problem of generating novel molecules with desired interaction properties as a multi-objective optimization problem. Interaction binding models are learned from binding data using graph convolution networks (GCNs). Since the experimentally obtained property scores are recognised as having potentially gross errors, we adopted a robust loss for the model. Combinations of these terms, including drug likeness and synthetic accessibility, are then optimized using reinforcement learning based on a graph convolution policy approach. Some of the molecules generated, while legitimate chemically, can have excellent drug-likeness scores but appear unusual. We provide an example based on the binding potency of small molecules to dopamine transporters. We extend our method successfully to use a multi-objective reward function, in this case for generating novel molecules that bind with dopamine transporters but not with those for norepinephrine. Our method should be generally applicable to the generation in silico of molecules with desirable properties.
我们将生成具有所需相互作用特性的新型分子的问题作为一个多目标优化问题来处理。使用图卷积网络(GCN)从结合数据中学习相互作用结合模型。由于实验获得的性质分数被认为可能存在严重误差,我们为模型采用了一种稳健损失。然后,基于图卷积策略方法,使用强化学习对这些术语的组合(包括药物相似性和合成可及性)进行优化。生成的一些分子虽然在化学上是合理的,但可能具有优异的药物相似性分数,但看起来不寻常。我们提供了一个基于小分子与多巴胺转运体结合效力的例子。我们成功地扩展了我们的方法,以使用多目标奖励函数,在这种情况下用于生成与多巴胺转运体结合但不与去甲肾上腺素转运体结合的新型分子。我们的方法应该普遍适用于计算机模拟生成具有理想性质的分子。