Living Systems Institute, University of Exeter, Exeter EX4 4QD, UK.
College of Engineering, Mathematics, and Physical Sciences, University of Exeter, Exeter EX4 4QD, UK.
Philos Trans R Soc Lond B Biol Sci. 2020 Feb 17;375(1792):20190393. doi: 10.1098/rstb.2019.0393. Epub 2019 Dec 30.
Living creatures exhibit a remarkable diversity of locomotion mechanisms, evolving structures specialized for interacting with their environment. In the vast majority of cases, locomotor behaviours such as flying, crawling and running are orchestrated by nervous systems. Surprisingly, microorganisms can enact analogous movement gaits for swimming using multiple, fast-moving cellular protrusions called cilia and flagella. Here, I demonstrate intermittency, reversible rhythmogenesis and gait mechanosensitivity in algal flagella, to reveal the active nature of locomotor patterning. In addition to maintaining free-swimming gaits, I show that the algal flagellar apparatus functions as a central pattern generator that encodes the beating of each flagellum in a network in a manner. The latter provides a novel symmetry-breaking mechanism for cell reorientation. These findings imply that the capacity to generate and coordinate complex locomotor patterns does not require neural circuitry but rather the minimal ingredients are present in simple unicellular organisms. This article is part of the Theo Murphy meeting issue 'Unity and diversity of cilia in locomotion and transport'.
生物表现出显著多样的运动机制,进化出专门用于与环境相互作用的结构。在绝大多数情况下,飞行、爬行和奔跑等运动行为是由神经系统协调的。令人惊讶的是,微生物可以使用称为纤毛和鞭毛的多个快速运动的细胞突起来模拟类似的游泳运动步态。在这里,我证明了藻类鞭毛的间歇性、可逆节律发生和步态机械敏感性,以揭示运动模式的主动性。除了维持自由游动的步态外,我还表明,藻类鞭毛装置作为一个中央模式发生器,以网络的方式编码每个鞭毛的拍打。后者为细胞重新定向提供了一种新的对称破缺机制。这些发现意味着产生和协调复杂运动模式的能力不需要神经回路,而是在简单的单细胞生物中存在着基本的成分。本文是 Theo Murphy 会议议题“运动和运输中的纤毛的统一性和多样性”的一部分。