Bassani Ilaria, Larousse Marie, Tran Quang D, Attard Agnès, Galiana Eric
Université Côte d'Azur, INRAE, CNRS, ISA, Sophia Antipolis 06903, France.
Université Côte d'Azur, CNRS, UMR 7010, Institut de Physique de Nice, Nice 06108, France.
Comput Struct Biotechnol J. 2020 Nov 21;18:3766-3773. doi: 10.1016/j.csbj.2020.10.045. eCollection 2020.
To explore moist soils and to target host plants, phytopathogenic species utilize the sensory and propulsion capabilities of the biflagellate unicellular zoospores they produce. Zoospore motion and interactions with the microenvironment are of primary importance for physiology. These are also of critical significance for plant pathology in early infection sequential events and their regulation: the directed zoospore migration toward the host, the local aggregation and adhesion at the host penetration site. In the soil, these early events preceding the root colonization are orchestrated by guidance factors, released from the soil particles in water films, or emitted within microbiota and by host plants. This signaling network is perceived by zoospores and results in coordinated behavior and preferential localization in the rhizosphere. Recent computational and structural studies suggest that rhizospheric ion and plant metabolite sensing is a key determinant in driving zoospore motion, orientation and aggregation. To reach their target, zoospores respond to various molecular, chemical and electrical stimuli. However, it is not yet clear how these signals are generated in local soil niches and which gene functions govern the sensing and subsequent responses of zoospores. Here we review studies on the soil, microbial and host-plant factors that drive zoospore motion, as well as the adaptations governing zoospore behavior. We propose several research directions that could be explored to characterize the role of zoospore microbial ecology in disease.
为了探索湿润土壤并定位寄主植物,植物病原物种利用它们产生的双鞭毛单细胞游动孢子的感知和推进能力。游动孢子的运动以及与微环境的相互作用对生理学至关重要。这些对于植物病理学早期感染的连续事件及其调控也具有关键意义:游动孢子向寄主的定向迁移、在寄主穿透部位的局部聚集和粘附。在土壤中,这些在根部定殖之前的早期事件是由从水膜中的土壤颗粒释放、在微生物群落内或由寄主植物释放的引导因子精心安排的。这个信号网络被游动孢子感知,并导致其在根际的协调行为和优先定位。最近的计算和结构研究表明,根际离子和植物代谢物感知是驱动游动孢子运动、定向和聚集的关键决定因素。为了到达目标,游动孢子会对各种分子、化学和电刺激做出反应。然而,目前尚不清楚这些信号是如何在局部土壤生态位中产生的,以及哪些基因功能控制着游动孢子的感知和后续反应。在这里,我们综述了关于驱动游动孢子运动的土壤、微生物和寄主植物因子的研究,以及控制游动孢子行为的适应性。我们提出了几个可以探索的研究方向,以表征游动孢子微生物生态学在疾病中的作用。