Suppr超能文献

一种用于识别条件特定路径效应的潜在结果演算方法。

A Potential Outcomes Calculus for Identifying Conditional Path-Specific Effects.

作者信息

Malinsky Daniel, Shpitser Ilya, Richardson Thomas

机构信息

Johns Hopkins University, Department of Computer Science, Baltimore, MD USA.

University of Washington, Department of Statistics, Seattle, WA USA.

出版信息

Proc Mach Learn Res. 2019 Apr;89:3080-3088.

Abstract

The do-calculus is a well-known deductive system for deriving connections between interventional and observed distributions, and has been proven complete for a number of important identifiability problems in causal inference [1, 8, 18]. Nevertheless, as it is currently defined, the do-calculus is inapplicable to causal problems that involve complex nested counterfactuals which cannot be expressed in terms of the "do" operator. Such problems include analyses of path-specific effects and dynamic treatment regimes. In this paper we present the (po-calculus), a natural generalization of do-calculus for arbitrary potential outcomes. We thereby provide a bridge between identification approaches which have their origins in artificial intelligence and statistics, respectively. We use po-calculus to give a complete identification algorithm for conditional path-specific effects with applications to problems in mediation analysis and algorithmic fairness.

摘要

干预演算(do-calculus)是一种用于推导干预分布与观测分布之间联系的著名演绎系统,并且已被证明对于因果推断中的许多重要可识别性问题是完备的[1, 8, 18]。然而,按照目前的定义,干预演算不适用于涉及复杂嵌套反事实的因果问题,这些问题无法用“do”算子来表达。此类问题包括路径特定效应分析和动态治疗方案分析。在本文中,我们提出了 (潜在结果演算,po-calculus),它是干预演算对任意潜在结果的自然推广。由此,我们在分别起源于人工智能和统计学的识别方法之间架起了一座桥梁。我们使用潜在结果演算给出了一个用于条件路径特定效应的完备识别算法,并将其应用于中介分析和算法公平性问题。

相似文献

2
Defining causal mediation with a longitudinal mediator and a survival outcome.
Lifetime Data Anal. 2019 Oct;25(4):593-610. doi: 10.1007/s10985-018-9449-0. Epub 2018 Sep 14.
5
Fractional calculus in bioengineering, part 3.
Crit Rev Biomed Eng. 2004;32(3-4):195-377. doi: 10.1615/critrevbiomedeng.v32.i34.10.
6
Path-specific effects in the presence of a survival outcome and causally ordered multiple mediators with application to genomic data.
Stat Methods Med Res. 2022 Oct;31(10):1916-1933. doi: 10.1177/09622802221104239. Epub 2022 May 29.
7
Backpropagation and ordered derivatives in the time scales calculus.
IEEE Trans Neural Netw. 2010 Aug;21(8):1262-9. doi: 10.1109/TNN.2010.2050332. Epub 2010 Jul 8.
9
Fractional calculus in bioengineering, part 2.
Crit Rev Biomed Eng. 2004;32(2):105-93. doi: 10.1615/critrevbiomedeng.v32.i2.10.
10
An introduction to causal inference.
Int J Biostat. 2010 Feb 26;6(2):Article 7. doi: 10.2202/1557-4679.1203.

引用本文的文献

2
The Causal Fairness Field Guide: Perspectives From Social and Formal Sciences.
Front Big Data. 2022 Apr 29;5:892837. doi: 10.3389/fdata.2022.892837. eCollection 2022.
5
Identification in Causal Models With Hidden Variables.
J Soc Fr Statistique (2009). 2020 Jul;161(1):91-119. Epub 2020 Jun 30.
6
Intervening on Network Ties.
Uncertain Artif Intell. 2019 Jul;2019.

本文引用的文献

1
Learning Optimal Fair Policies.
Proc Mach Learn Res. 2019 Jun;97:4674-4682.
3
Fair Inference on Outcomes.
Proc AAAI Conf Artif Intell. 2018 Feb;2018:1931-1940. Epub 2018 Apr 25.
4
CAUSAL INFERENCE WITH A GRAPHICAL HIERARCHY OF INTERVENTIONS.
Ann Stat. 2016 Dec;44(6):2433-2466. doi: 10.1214/15-AOS1411. Epub 2016 Nov 23.
5
Counterfactual graphical models for longitudinal mediation analysis with unobserved confounding.
Cogn Sci. 2013 Aug;37(6):1011-35. doi: 10.1111/cogs.12058. Epub 2013 Jul 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验