Suppr超能文献

《因果公平性指南:来自社会科学和形式科学的视角》

The Causal Fairness Field Guide: Perspectives From Social and Formal Sciences.

作者信息

Carey Alycia N, Wu Xintao

机构信息

Department of Computer Science and Computer Engineering, University of Arkansas, Fayetteville, AR, United States.

出版信息

Front Big Data. 2022 Apr 29;5:892837. doi: 10.3389/fdata.2022.892837. eCollection 2022.

Abstract

Over the past several years, multiple different methods to measure the causal fairness of machine learning models have been proposed. However, despite the growing number of publications and implementations, there is still a critical lack of literature that explains the interplay of causality-based fairness notions with the social sciences of philosophy, sociology, and law. We hope to remedy this issue by accumulating and expounding upon the thoughts and discussions of causality-based fairness notions produced by both social and formal (specifically machine learning) sciences in this field guide. In addition to giving the mathematical backgrounds of several popular causality-based fair machine learning notions, we explain their connection to and interplay with the fields of philosophy and law. Further, we explore several criticisms of the current approaches to causality-based fair machine learning from a sociological viewpoint as well as from a technical standpoint. It is our hope that this field guide will help fair machine learning practitioners better understand how their causality-based fairness notions align with important humanistic values (such as fairness) and how we can, as a field, design methods and metrics to better serve oppressed and marginalized populaces.

摘要

在过去几年中,人们提出了多种不同的方法来衡量机器学习模型的因果公平性。然而,尽管相关的出版物和实现越来越多,但仍然严重缺乏能够解释基于因果关系的公平概念与哲学、社会学和法学等社会科学之间相互作用的文献。我们希望通过在本领域指南中积累和阐述社会科学和形式科学(特别是机器学习)在基于因果关系的公平概念方面的思想和讨论,来弥补这一问题。除了介绍几种流行的基于因果关系的公平机器学习概念的数学背景外,我们还解释了它们与哲学和法学领域的联系及相互作用。此外,我们从社会学和技术角度探讨了对当前基于因果关系的公平机器学习方法的一些批评。我们希望本领域指南能帮助公平机器学习从业者更好地理解他们基于因果关系的公平概念如何与重要的人文价值观(如公平)保持一致,以及作为一个领域,我们如何设计方法和指标来更好地服务于受压迫和边缘化的人群。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1399/9099231/41e992165352/fdata-05-892837-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验