UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Biotechnology, Permoserstr. 15, 04318, Leipzig, Germany; Institute of Landscape Ecology, University of Münster, Heisenbergstr. 2, 48149, Münster, Germany; Pontifical Bolivarian University, Environmental Engineering Faculty, Km 7 Vía Piedecuesta, Bucaramanga, Colombia.
UFZ - Helmholtz-Centre for Environmental Research, Department of Effect-Directed Analysis, Permoserstr. 15, 04318, Leipzig, Germany.
Environ Pollut. 2020 Apr;259:113767. doi: 10.1016/j.envpol.2019.113767. Epub 2019 Dec 16.
Glyphosate is one of the most used herbicides in the world. The fate of glyphosate in tropical soils may be different from that in soils from temperate regions. In particular, the amounts and types of non-extractable residues (NER) may differ considerably, resulting in different relative contributions of xenoNER (sorbed and sequestered parent compound) and bioNER (biomass residues of degraders). In addition, environmental conditions and agricultural practices leading to total organic carbon (TOC) or pH variation can alter the degradation of glyphosate. The aim of this study is thus to investigate how the glyphosate degradation and turnover are influenced by varying temperature, pH and TOC of sandy loam soil from Colombia. The pH or TOC of a Colombian soil was modified to yield five treatments: control (pH 7.0, TOC 3%), 4% TOC, 5% TOC, pH 6.5, and pH 5.5. Each treatment received 50 mg kg of CN-glyphosate and was incubated at 10 °C, 20 °C and 30 °C for 40 days. Rising temperature increased the mineralization of CN-glyphosate from 13 to 20% (10 °C) to 32-39% (20 °C) and 41-51% (30 °C) and decreased the amounts of extractable CN-glyphosate after 40 days of incubation from 13 to 26% (10 °C) to 4.6-12% (20 °C) and 1.2-3.2% (30 °C). Extractable CN-glyphosate increased with higher TOC and higher pH. Total C-NER were similar in all treatments and at all temperatures (47%-60%), indicating that none of the factors studied affected the amount of total C-NER. However, C-bioNER dominated within the C-NER pool in the control and the 4% TOC treatment (76-88% of total C-NER at 20 °C and 30 °C), whereas in soil with 5% TOC and pH 6.5 or 5.5 C-bioNER were lower (47-61% at 20 °C and 30 °C). In contrast, the N-bioNER pool was small (between 14 and 39% of the N-NER). Thus, more than 60% of N-NER is potentially hazardous xenobiotic NER which need careful attention in the future.
草甘膦是世界上使用最广泛的除草剂之一。草甘膦在热带土壤中的命运可能与在温带地区土壤中的命运不同。特别是,不可提取残留物(NER)的数量和类型可能有很大差异,导致异源 NER(吸附和隔离的母体化合物)和生物 NER(降解物的生物量残留物)的相对贡献不同。此外,导致总有机碳(TOC)或 pH 值变化的环境条件和农业实践可以改变草甘膦的降解。因此,本研究的目的是研究温度、pH 值和哥伦比亚壤土的 TOC 变化如何影响草甘膦的降解和转化。通过修改哥伦比亚土壤的 pH 值或 TOC,生成了 5 种处理:对照(pH7.0,TOC3%)、4%TOC、5%TOC、pH6.5 和 pH5.5。每种处理都接受 50mgkg 的 CN-草甘膦,并在 10°C、20°C 和 30°C 下孵育 40 天。升高的温度将 CN-草甘膦的矿化率从 13%(10°C)提高到 20%(20°C)和 32%-39%(30°C),并将孵育 40 天后可提取的 CN-草甘膦的含量从 13%降低到 26%(10°C)到 4.6%-12%(20°C)和 1.2%-3.2%(30°C)。可提取的 CN-草甘膦随 TOC 和 pH 值的升高而增加。在所有处理和温度下,总 C-NER 相似(47%-60%),这表明研究的因素均未影响总 C-NER 的量。然而,在对照和 4%TOC 处理中,C-生物 NER 在 C-NER 库中占主导地位(20°C 和 30°C 时总 C-NER 的 76%-88%),而在 TOC 为 5%和 pH 值为 6.5 或 5.5 的土壤中,C-生物 NER 较低(20°C 和 30°C 时为 47%-61%)。相比之下,N-生物 NER 库较小(N-NER 的 14%-39%)。因此,超过 60%的 N-NER 是潜在的有害异生物质 NER,这在未来需要谨慎关注。