Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences , Northwestern Polytechnical University , 127 Youyi West Road , Xi'an , Shaanxi Province 710072 , China.
Department of Biological and Food Engineering, College of Chemical Engineering , Xiangtan University , Xiangtan , Hunan 411105 , China.
J Agric Food Chem. 2020 Jan 29;68(4):1126-1135. doi: 10.1021/acs.jafc.9b05302. Epub 2020 Jan 13.
Phenylpropanoid (PPPN) compounds are widely used in agriculture, medical, food, and cosmetic industries because of their multiple bioactivities. sp. MG1, an endophytic fungus isolated from grape, is a new natural source of PPPNs. However, the PPPN biosynthesis pathway in MG1 tends to be suppressed under normal growth conditions. Starvation has been reported to stimulate the PPPN pathway in plants, but this phenomenon has not been well studied in endophytic fungi. Here, metabolomics analysis was used to examine the profile of PPPN compounds, and quantitative reverse transcription-polymerase chain reaction was used to detect the expression of key genes in the PPPN biosynthesis pathway under starvation conditions. Starvation treatment significantly increased the accumulation of shikimate and PPPN compounds and upregulated the expression of key genes in their biosynthesis pathways. In addition to previously reported PPPNs, sinapate, 4-hydroxystyrene, piceatannol, and taxifolin were also detected under starvation treatment. These findings suggest that starvation treatment provides an effective way to optimize the production of PPPN compounds and may permit the investigation of compounds that are undetectable under normal conditions. Moreover, the diversity of its PPPNs makes strain MG1 a rich repository of valuable compounds and an extensive genetic resource for future studies.
苯丙烷类(PPPN)化合物因其多种生物活性而广泛应用于农业、医学、食品和化妆品行业。从葡萄中分离出来的内生真菌 sp. MG1 是 PPPN 的一种新的天然来源。然而,在正常生长条件下,MG1 中的 PPPN 生物合成途径往往受到抑制。据报道,饥饿会刺激植物中的 PPPN 途径,但这种现象在内生真菌中尚未得到很好的研究。在这里,代谢组学分析用于研究 PPPN 化合物的特征,并使用定量逆转录聚合酶链反应检测饥饿条件下 PPPN 生物合成途径中的关键基因的表达。饥饿处理显著增加了莽草酸和 PPPN 化合物的积累,并上调了它们生物合成途径中的关键基因的表达。除了先前报道的 PPPN 外,在饥饿处理下还检测到了芥子酸、4-羟基苯乙烯、白藜芦醇和杨梅素。这些发现表明,饥饿处理为优化 PPPN 化合物的生产提供了一种有效方法,并且可能允许研究在正常条件下无法检测到的化合物。此外,其 PPPN 的多样性使菌株 MG1 成为有价值化合物的丰富来源,也是未来研究的广泛遗传资源。