Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
Department of Nanoscience, Joint School of Nanoscience and Nanoengineering, University of North Carolina at Greensboro, Greensboro, NC, 27401, USA.
Talanta. 2020 Mar 1;209:120538. doi: 10.1016/j.talanta.2019.120538. Epub 2019 Nov 5.
Carbon nanodots (CNDs) offer potential applications in photocatalysis, optoelectronics, bio-imaging, and sensing due to their excellent photoluminescence (PL) properties, biocompatibility, aqueous solubility, and easy functionalization. Recent emphasis on CNDs in the selective detection of metal ions is due to the growing concern for human and environmental safety. In this work, two types of fluorescent carbon nanodots (CNDs) are synthesized economically from ethylene diamine (E-CNDs) or urea (U-CNDs) in a single step microwave process. The as-prepared CNDs exhibit excellent PL at an excitation wavelength of 350 nm with a quantum yield of 64% for E-CNDs and 8.4% for U-CNDs with reference to quinine sulfate. Both E-CNDs and U-CNDs demonstrate high selectivity towards Fe (III) ions among different metal ions, by fluorescence quenching in a dose dependent manner. The limit of detection of E-CNDs and U-CNDs is observed to be 18 nM and 30 nM, respectively, in the linear response range of 0-2000 μM with a short response time (seconds). The CNDs detect Fe (III) ions in tap water and serum sample with no spiking and the recovery was ~100% with the Fe (III) samples. Cellular internalization studies confirm the localization of the CNDs and the optical imaging sensing of Fe (III) ions inside living cells. A charge transfer fluorescence quenching mechanism, specifically between the CNDs and Fe (III), is proposed and examined using cyclic voltammetry. The overall characteristics of the E-CNDs provides a potential sensing platform in highly sensitive and selective detection of Fe (III) ions.
碳纳米点(CNDs)由于其优异的光致发光(PL)性能、生物相容性、亲水性和易功能化,在光催化、光电、生物成像和传感等领域具有潜在的应用前景。由于人们越来越关注人类和环境安全,因此最近人们对 CNDs 在金属离子的选择性检测中的应用给予了高度重视。在这项工作中,我们通过一步微波法从乙二胺(E-CNDs)或尿素(U-CNDs)经济地合成了两种类型的荧光碳纳米点(CNDs)。所制备的 CNDs 在 350nm 的激发波长下表现出优异的 PL,E-CNDs 的量子产率为 64%,U-CNDs 的量子产率为 8.4%,均以硫酸奎宁为参比。E-CNDs 和 U-CNDs 均表现出对 Fe(III)离子的高选择性,通过荧光猝灭呈现剂量依赖性。E-CNDs 和 U-CNDs 的检测限分别为 18nM 和 30nM,在 0-2000μM 的线性响应范围内,响应时间短(秒级)。CNDs 可在未加标自来水中和血清样本中检测 Fe(III)离子,回收率约为 100%。细胞内吞研究证实了 CNDs 的定位以及 Fe(III)离子在活细胞内的光学成像传感。提出并通过循环伏安法研究了基于 CNDs 和 Fe(III)之间的电荷转移荧光猝灭机制。E-CNDs 的整体特性为高度灵敏和选择性检测 Fe(III)离子提供了潜在的传感平台。
Acc Chem Res. 2019-3-18
Mater Sci Eng C Mater Biol Appl. 2016-12-1
ACS Appl Bio Mater. 2025-6-16
Nanomaterials (Basel). 2025-5-11
Nat Commun. 2024-11-11
J Phys Chem C Nanomater Interfaces. 2023-4-5
Nanoscale Adv. 2020-12-10
Polymers (Basel). 2022-5-16