Suppr超能文献

碳纳米点用于电荷转移过程。

Carbon Nanodots for Charge-Transfer Processes.

机构信息

Departamento de Química Inorgánica, Analítica y Química Física, INQUIMAE, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Pabellón 2, Ciudad Universitaria , C1428EHA Buenos Aires , Argentina.

Chair for Theoretical Chemistry , Technische Universität München , Lichtenbergstr. 4 , D-85747 Garching , Germany.

出版信息

Acc Chem Res. 2019 Apr 16;52(4):955-963. doi: 10.1021/acs.accounts.8b00673. Epub 2019 Mar 18.

Abstract

In recent years, carbon nanodots (CNDs) have emerged as an environmentally friendly, biocompatible, and inexpensive class of material, whose features sparked interest for a wide range of applications. Most notable is their photoactivity, as exemplified by their strong luminescence. Consequently, CNDs are currently being investigated as active components in photocatalysis, sensing, and optoelectronics. Charge-transfer interactions are common to all these areas. It is therefore essential to be able to fine-tune both the electronic structure of CNDs and the electronic communication in CND-based functional materials. The complex, but not completely deciphered, structure of CNDs necessitates, however, a multifaceted strategy to investigate their fundamental electronic structure and to establish structure-property relationships. Such investigations require a combination of spectroscopic methods, such as ultrafast transient absorption and fluorescence up-conversion techniques, electrochemistry, and modeling of CNDs, both in the absence and presence of other photoactive materials. Only a sound understanding of the dynamics of charge transfer, charge shift, charge transport, etc., with and without light makes much-needed improvements in, for example, photocatalytic processes, in which CNDs are used as either photosensitizers or catalytic centers, possible. This Account addresses the structural, photophysical, and electrochemical properties of CNDs, in general, and the charge-transfer chemistry of CNDs, in particular. Pressure-synthesized CNDs (pCNDs), for which citric acid and urea are used as inexpensive and biobased precursor materials, lie at the center of attention. A simple microwave-assisted thermolytic reaction, performed in sealed vessels, yields pCNDs with a fairly homogeneous size distribution of ∼1-2 nm. The narrow and excitation-independent photoluminescence of pCNDs contrasts with that seen in CNDs synthesized by other techniques, making pCNDs optimal for in-depth physicochemical analyses. The atomistic and electronic structures of CNDs were also analyzed by quantum chemical modeling approaches that led to a range of possible structures, ranging from heavily functionalized, graphene-like structures to disordered amorphous particles containing small sp domains. Both the electron-accepting and -donating performances of CNDs make the charge-transfer chemistry of CNDs rather versatile. Both covalent and noncovalent synthetic approaches have been explored, resulting in architectures of various sizes. CNDs, for example, have been combined with molecular materials ranging from electron-donating porphyrins and extended tetrathiafulvalenes to electron-accepting perylendiimides, or nanocarbon materials such as polymer-wrapped single-walled carbon nanotubes. In every case, charge-separated states formed as part of the reaction cascades initiated by photoexcitation. Charge-transfer assemblies including CNDs have also played a role in technological applications: for example, a proof-of-concept dye-sensitized solar cell was designed and tested, in which CNDs were adsorbed on the surface of mesoporous anatase TiO. The wide range of reported electron-donor-acceptor systems documents the versatility of CNDs as molecular building blocks, whose electronic properties are tunable for the needs of emerging technologies.

摘要

近年来,碳纳米点(CND)作为一种环保、生物相容且廉价的材料类别脱颖而出,其特性引发了广泛应用的兴趣。最值得注意的是它们的光活性,例如它们的强发光。因此,CND 目前正在作为光催化、传感和光电领域的活性成分进行研究。电荷转移相互作用是所有这些领域共有的。因此,能够精细调整 CND 的电子结构以及基于 CND 的功能材料中的电子通信是至关重要的。然而,CND 复杂但尚未完全破译的结构需要一种多方面的策略来研究其基本电子结构并建立结构-性质关系。这种研究需要结合光谱方法,如超快瞬态吸收和荧光上转换技术、电化学以及 CND 的建模,无论是在不存在还是存在其他光活性材料的情况下。只有对电荷转移、电荷转移、电荷输运等的动力学有了充分的了解,例如在光催化过程中,CND 可以作为敏化剂或催化中心,才有可能对其进行急需的改进。本账户主要讨论了 CND 的结构、光物理和电化学性质,特别是 CND 的电荷转移化学。以柠檬酸和尿素为廉价生物基前体材料的高压合成 CND(pCND)是关注的中心。在密封容器中进行简单的微波辅助热解反应,可得到具有约 1-2nm 均匀尺寸分布的 pCND。pCND 的窄且与激发无关的光致发光与其他技术合成的 CND 相比有很大的不同,这使得 pCND 非常适合进行深入的物理化学分析。通过量子化学建模方法分析了 CND 的原子和电子结构,得出了一系列可能的结构,范围从高度功能化的类石墨烯结构到含有小 sp 域的无序非晶颗粒。CND 的电子接受和供体性能都使 CND 的电荷转移化学具有相当大的多功能性。已经探索了共价和非共价合成方法,从而得到了各种尺寸的结构。例如,将 CND 与分子材料结合,包括电子供体卟啉和扩展的四硫富瓦烯到电子受体苝二酰亚胺,或纳米碳材料,如聚合物包裹的单壁碳纳米管。在每种情况下,作为光激发引发的反应级联的一部分形成了电荷分离态。包括 CND 的电荷转移组装也在技术应用中发挥了作用:例如,设计并测试了一个概念验证的染料敏化太阳能电池,其中 CND 被吸附在介孔锐钛矿 TiO 的表面。所报道的广泛的电子给体-受体系统证明了 CND 作为分子构建块的多功能性,其电子性质可以根据新兴技术的需要进行调整。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验