Suppr超能文献

使用质谱流式细胞术和相关的高维成像方法进行免疫监测。

Immune monitoring using mass cytometry and related high-dimensional imaging approaches.

机构信息

Department of Pathology, School of Medicine, Stanford University, Palo Alto, CA, USA.

出版信息

Nat Rev Rheumatol. 2020 Feb;16(2):87-99. doi: 10.1038/s41584-019-0338-z. Epub 2019 Dec 31.

Abstract

The cellular complexity and functional diversity of the human immune system necessitate the use of high-dimensional single-cell tools to uncover its role in multifaceted diseases such as rheumatic diseases, as well as other autoimmune and inflammatory disorders. Proteomic technologies that use elemental (heavy metal) reporter ions, such as mass cytometry (also known as CyTOF) and analogous high-dimensional imaging approaches (including multiplexed ion beam imaging (MIBI) and imaging mass cytometry (IMC)), have been developed from their low-dimensional counterparts, flow cytometry and immunohistochemistry, to meet this need. A growing number of studies have been published that use these technologies to identify functional biomarkers and therapeutic targets in rheumatic diseases, but the full potential of their application to rheumatic disease research has yet to be fulfilled. This Review introduces the underlying technologies for high-dimensional immune monitoring and discusses aspects necessary for their successful implementation, including study design principles, analytical tools and future developments for the field of rheumatology.

摘要

人体免疫系统的细胞复杂性和功能多样性需要使用高维单细胞工具来揭示其在风湿性疾病等多方面疾病中的作用,以及其他自身免疫和炎症性疾病。蛋白质组学技术使用元素(重金属)报告离子,如质谱流式细胞术(也称为 CyTOF)和类似的高维成像方法(包括多重离子束成像(MIBI)和成像质谱流式细胞术(IMC)),是从其低维对应物,流式细胞术和免疫组织化学发展而来的,以满足这一需求。越来越多的研究已经发表,这些研究使用这些技术来识别风湿性疾病中的功能生物标志物和治疗靶点,但它们在风湿性疾病研究中的应用潜力尚未得到充分发挥。这篇综述介绍了高维免疫监测的基础技术,并讨论了成功实施这些技术所需的各个方面,包括研究设计原则、分析工具以及风湿病领域的未来发展。

相似文献

1
Immune monitoring using mass cytometry and related high-dimensional imaging approaches.
Nat Rev Rheumatol. 2020 Feb;16(2):87-99. doi: 10.1038/s41584-019-0338-z. Epub 2019 Dec 31.
2
Proteomics on the diagnostic horizon: Lessons from rheumatology.
Am J Med Sci. 2007 Jan;333(1):16-25. doi: 10.1097/00000441-200701000-00003.
3
Multiparameter flow cytometry for discovery of disease mechanisms in rheumatic diseases.
Arthritis Rheum. 2013 May;65(5):1148-56. doi: 10.1002/art.37847.
4
Biomarkers to guide clinical therapeutics in rheumatology?
Curr Opin Rheumatol. 2016 Mar;28(2):168-75. doi: 10.1097/BOR.0000000000000250.
5
Mass Cytometry Imaging for the Study of Human Diseases-Applications and Data Analysis Strategies.
Front Immunol. 2019 Nov 14;10:2657. doi: 10.3389/fimmu.2019.02657. eCollection 2019.
6
Imaging in rheumatology: new tools for use in clinical practice in 2012. Preface.
Best Pract Res Clin Rheumatol. 2012 Dec;26(6):743-9. doi: 10.1016/j.berh.2012.10.001.
7
Mass Cytometry, Imaging Mass Cytometry, and Multiplexed Ion Beam Imaging Use in a Clinical Setting.
Clin Lab Med. 2021 Jun;41(2):297-308. doi: 10.1016/j.cll.2021.03.008. Epub 2021 Apr 24.
8
Rheumatology: a close encounter with proteomics.
Rheumatology (Oxford). 2005 Oct;44(10):1217-26. doi: 10.1093/rheumatology/keh694. Epub 2005 May 31.
9
Immune cell profiling to guide therapeutic decisions in rheumatic diseases.
Nat Rev Rheumatol. 2015 Sep;11(9):541-51. doi: 10.1038/nrrheum.2015.71. Epub 2015 Jun 2.

引用本文的文献

1
2
Assessing Human Treg Suppression at Single-Cell Resolution Using Mass Cytometry.
Bio Protoc. 2025 Aug 20;15(16):e5424. doi: 10.21769/BioProtoc.5424.
3
Immune profiling in oncology: bridging the gap between technology and treatment.
Med Oncol. 2025 Aug 26;42(10):446. doi: 10.1007/s12032-025-03002-x.
4
The Application of Single-Cell Technologies for Vaccine Development Against Viral Infections.
Vaccines (Basel). 2025 Jun 26;13(7):687. doi: 10.3390/vaccines13070687.
5
Polymer-Based Mass Cytometry Reagents: Synthesis and Biomedical Applications.
Molecules. 2025 Jul 19;30(14):3034. doi: 10.3390/molecules30143034.
7
Feasibility of Multiplex Cytokine Profiling in Preterm Labor: Towards Biomarker Discovery.
Biology (Basel). 2025 Jun 17;14(6):714. doi: 10.3390/biology14060714.
8
Optimal transport reveals immune perturbation and fingerprints over time in COVID-19 vaccination.
Exp Biol Med (Maywood). 2025 May 21;250:10445. doi: 10.3389/ebm.2025.10445. eCollection 2025.
9
Metabolism in hematology: Technological advances open new perspectives on disease biology and treatment.
Hemasphere. 2025 May 19;9(5):e70134. doi: 10.1002/hem3.70134. eCollection 2025 May.

本文引用的文献

1
GM-CSF and CXCR4 define a T helper cell signature in multiple sclerosis.
Nat Med. 2019 Aug;25(8):1290-1300. doi: 10.1038/s41591-019-0521-4. Epub 2019 Jul 22.
2
Comprehensive Immune Monitoring of Clinical Trials to Advance Human Immunotherapy.
Cell Rep. 2019 Jul 16;28(3):819-831.e4. doi: 10.1016/j.celrep.2019.06.049.
3
Deep learning for cellular image analysis.
Nat Methods. 2019 Dec;16(12):1233-1246. doi: 10.1038/s41592-019-0403-1. Epub 2019 May 27.
5
Microneedle-based device for the one-step painless collection of capillary blood samples.
Nat Biomed Eng. 2018 Mar;2(3):151-157. doi: 10.1038/s41551-018-0194-1. Epub 2018 Feb 19.
6
A comparison of single-cell trajectory inference methods.
Nat Biotechnol. 2019 May;37(5):547-554. doi: 10.1038/s41587-019-0071-9. Epub 2019 Apr 1.
7
Distinct phenotype of CD4 T cells driving celiac disease identified in multiple autoimmune conditions.
Nat Med. 2019 May;25(5):734-737. doi: 10.1038/s41591-019-0403-9. Epub 2019 Mar 25.
8
Parallel analysis of tri-molecular biosynthesis with cell identity and function in single cells.
Nat Commun. 2019 Mar 12;10(1):1185. doi: 10.1038/s41467-019-09128-7.
10
Proliferation tracing with single-cell mass cytometry optimizes generation of stem cell memory-like T cells.
Nat Biotechnol. 2019 Mar;37(3):259-266. doi: 10.1038/s41587-019-0033-2. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验