Sasou Ai, Shigemitsu Takanari, Morita Shigeto, Masumura Takehiro
Laboratory of Genetic Engineering, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Kyoto 606-8522, Japan.
Biotechnology Research Department, Kyoto Prefectural Agriculture, Forestry and Fisheries Technology Research Center, Kitainayazuma, Seika-cho, Soraku-gun, Kyoto 619-0244, Japan.
Plant Biotechnol (Tokyo). 2018 Dec 25;35(4):405-409. doi: 10.5511/plantbiotechnology.18.0918a.
Rice prolamin species form a layered structure in the protein body type I (PB-I) storage organelle. Rice prolamins are classified as 10 kDa, 13a-1, 13a-2, 13b-1, 13b-2 and 16 kDa prolamin. Prolamin species form layer structure in PB-I in order of 10 kDa core, 13b-1 layer, 13a (13a-1 and 13a-2) and 16 kDa middle layer and 13b-2 outer-most layer. In a previous study, we showed that the fusion proteins in 13b-2 prolamin-GFP, 13a-1 prolamin-GFP and 10 kDa prolamin-GFP were localized in the same layer of PB-I as the native prolamin, when they were expressed by their respective native prolamin promoters. Our preliminary study suggested that the temporal control of the native prolamin promoters was responsible for the localization of the respective prolamins. The aim of this study was to determine whether the use of a prolamin promoter other than the native prolamin promoter would change the localization of prolamin-GFP fusion proteins. For this purpose, we generated transgenic lines expressing 13b-2 prolamin-GFP and 13a-1 prolamin-GFP fusion proteins driven by each prolamin promoter other than the native prolamin promoter. As a result, the localization of the fusion protein in PB-I was changed. Based on our results, foreign protein localization in PB-I can be achieved by the temporal control of the different prolamin promoters.
水稻醇溶蛋白在I型蛋白体(PB-I)储存细胞器中形成层状结构。水稻醇溶蛋白分为10 kDa、13a-1、13a-2、13b-1、13b-2和16 kDa醇溶蛋白。醇溶蛋白在PB-I中按10 kDa核心层、13b-1层、13a(13a-1和13a-2)和16 kDa中间层以及13b-2最外层的顺序形成层状结构。在先前的一项研究中,我们表明,当13b-2醇溶蛋白-GFP、13a-1醇溶蛋白-GFP和10 kDa醇溶蛋白-GFP融合蛋白由各自的天然醇溶蛋白启动子表达时,它们与天然醇溶蛋白定位于PB-I的同一层。我们的初步研究表明,天然醇溶蛋白启动子的时间控制负责各自醇溶蛋白的定位。本研究的目的是确定使用天然醇溶蛋白启动子以外的醇溶蛋白启动子是否会改变醇溶蛋白-GFP融合蛋白的定位。为此,我们构建了由天然醇溶蛋白启动子以外的每个醇溶蛋白启动子驱动表达13b-2醇溶蛋白-GFP和13a-1醇溶蛋白-GFP融合蛋白的转基因株系。结果,融合蛋白在PB-I中的定位发生了变化。根据我们的结果,通过不同醇溶蛋白启动子的时间控制可以实现外源蛋白在PB-I中的定位。