Suppr超能文献

不变解对Hele-Shaw通道中气泡瞬态行为的影响。

The influence of invariant solutions on the transient behaviour of an air bubble in a Hele-Shaw channel.

作者信息

Keeler Jack S, Thompson Alice B, Lemoult Grégoire, Juel Anne, Hazel Andrew L

机构信息

School of Mathematics and Manchester Centre for Nonlinear Dynamics (MCND), University of Manchester, Oxford Road, Manchester M13 9PL, UK.

School of Physics and Astronomy and MCND, University of Manchester, Oxford Road, Manchester M13 9PL, UK.

出版信息

Proc Math Phys Eng Sci. 2019 Dec;475(2232):20190434. doi: 10.1098/rspa.2019.0434. Epub 2019 Dec 18.

Abstract

We hypothesize that dynamical systems concepts used to study the transition to turbulence in shear flows are applicable to other transition phenomena in fluid mechanics. In this paper, we consider a finite air bubble that propagates within a Hele-Shaw channel containing a depth-perturbation. Recent experiments revealed that the bubble shape becomes more complex, quantified by an increasing number of transient bubble tips, with increasing flow rate. Eventually, the bubble changes topology, breaking into multiple distinct entities with non-trivial dynamics. We demonstrate that qualitatively similar behaviour to the experiments is exhibited by a previously established, depth-averaged mathematical model and arises from the model's intricate solution structure. For the bubble volumes studied, a stable asymmetric bubble exists for all flow rates of interest, while a second stable solution branch develops above a critical flow rate and transitions between symmetric and asymmetric shapes. The region of bistability is bounded by two Hopf bifurcations on the second branch. By developing a method for a numerical weakly nonlinear stability analysis we show that unstable periodic orbits (UPOs) emanate from the first Hopf bifurcation. Moreover, as has been found in shear flows, the UPOs are edge states that influence the transient behaviour of the system.

摘要

我们假设,用于研究剪切流中向湍流转变的动力学系统概念适用于流体力学中的其他转变现象。在本文中,我们考虑一个有限的气泡在含有深度扰动的Hele-Shaw通道内传播。最近的实验表明,随着流速增加,气泡形状变得更加复杂,这可以通过瞬态气泡尖端数量的增加来量化。最终,气泡改变拓扑结构,分裂成多个具有非平凡动力学的不同实体。我们证明,一个先前建立的深度平均数学模型表现出与实验定性相似的行为,并且这种行为源于该模型复杂的解结构。对于所研究的气泡体积,在所有感兴趣的流速下都存在一个稳定的不对称气泡,而在临界流速以上会出现第二个稳定解分支,并在对称和不对称形状之间转变。双稳区域由第二个分支上的两个霍普夫分岔界定。通过开发一种数值弱非线性稳定性分析方法,我们表明不稳定周期轨道(UPOs)从第一个霍普夫分岔处产生。此外,正如在剪切流中所发现的那样,UPOs是影响系统瞬态行为的边缘态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1a6d/6936619/1780c447b815/rspa20190434-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验