Suppr超能文献

elusive cochlear filter: wave origin of cochlear cross-frequency masking.

The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking.

机构信息

Caruso Department of Otolaryngology Head & Neck Surgery, University of Southern California, CA, Los Angeles, USA.

Department of Physics, University of Roma Tor Vergata, Rome, Italy.

出版信息

J Assoc Res Otolaryngol. 2021 Dec;22(6):623-640. doi: 10.1007/s10162-021-00814-2. Epub 2021 Oct 22.

Abstract

The mammalian cochlea achieves its remarkable sensitivity, frequency selectivity, and dynamic range by spatially segregating the different frequency components of sound via nonlinear processes that remain only partially understood. As a consequence of the wave-based nature of cochlear processing, the different frequency components of complex sounds interact spatially and nonlinearly, mutually suppressing one another as they propagate. Because understanding nonlinear wave interactions and their effects on hearing appears to require mathematically complex or computationally intensive models, theories of hearing that do not deal specifically with cochlear mechanics have often neglected the spatial nature of suppression phenomena. Here we describe a simple framework consisting of a nonlinear traveling-wave model whose spatial response properties can be estimated from basilar-membrane (BM) transfer functions. Without invoking jazzy details of organ-of-Corti mechanics, the model accounts well for the peculiar frequency-dependence of suppression found in two-tone suppression experiments. In particular, our analysis shows that near the peak of the traveling wave, the amplitude of the BM response depends primarily on the nonlinear properties of the traveling wave in more basal (high-frequency) regions. The proposed framework provides perhaps the simplest representation of cochlear signal processing that accounts for the spatially distributed effects of nonlinear wave propagation. Shifting the perspective from local filters to non-local, spatially distributed processes not only elucidates the character of cochlear signal processing, but also has important consequences for interpreting psychophysical experiments.

摘要

哺乳动物耳蜗通过非线性过程将声音的不同频率分量在空间上分离,从而实现了其卓越的灵敏度、频率选择性和动态范围,但这些过程仍部分未知。由于耳蜗处理的基于波的性质,复杂声音的不同频率分量在空间上相互作用非线性,相互抑制,因为它们传播。由于理解非线性波相互作用及其对听力的影响似乎需要数学上复杂或计算密集的模型,因此不专门涉及耳蜗力学的听力理论通常忽略了抑制现象的空间性质。在这里,我们描述了一个简单的框架,该框架由一个非线性行波模型组成,其空间响应特性可以从基底膜(BM)传递函数中估计出来。该模型无需援引耳蜗力学的爵士乐细节,就能很好地解释在双音抑制实验中发现的抑制现象的特殊频率依赖性。特别是,我们的分析表明,在行波的峰值附近,BM 响应的幅度主要取决于更基底(高频)区域中行波的非线性特性。所提出的框架提供了对耳蜗信号处理的最简单表示形式,该模型解释了非线性波传播的空间分布效应。从局部滤波器到非局部、空间分布过程的视角转变不仅阐明了耳蜗信号处理的特征,而且对解释心理物理实验也具有重要意义。

相似文献

1
The Elusive Cochlear Filter: Wave Origin of Cochlear Cross-Frequency Masking.
J Assoc Res Otolaryngol. 2021 Dec;22(6):623-640. doi: 10.1007/s10162-021-00814-2. Epub 2021 Oct 22.
3
Age and the human cochlear traveling wave delay.
Ear Hear. 1998 Apr;19(2):111-9. doi: 10.1097/00003446-199804000-00003.
4
Otoacoustic emission estimates of human basilar membrane impulse response duration and cochlear filter tuning.
Hear Res. 2016 Dec;342:150-160. doi: 10.1016/j.heares.2016.10.016. Epub 2016 Oct 27.
5
Mechanical tuning and amplification within the apex of the guinea pig cochlea.
J Physiol. 2017 Jul 1;595(13):4549-4561. doi: 10.1113/JP273881. Epub 2017 May 21.
7
The biophysical origin of traveling-wave dispersion in the cochlea.
Biophys J. 2010 Sep 22;99(6):1687-95. doi: 10.1016/j.bpj.2010.07.004.
8
Hearing as adaptive cascaded envelope interpolation.
Commun Biol. 2023 Jun 24;6(1):671. doi: 10.1038/s42003-023-05040-5.
9
Reverse wave propagation in the cochlea.
Proc Natl Acad Sci U S A. 2008 Feb 19;105(7):2729-33. doi: 10.1073/pnas.0708103105. Epub 2008 Feb 12.
10
Longitudinal pattern of basilar membrane vibration in the sensitive cochlea.
Proc Natl Acad Sci U S A. 2002 Dec 24;99(26):17101-6. doi: 10.1073/pnas.262663699. Epub 2002 Dec 2.

引用本文的文献

1
Acoustic estimation of voice roughness.
Atten Percept Psychophys. 2025 Apr 28. doi: 10.3758/s13414-025-03060-3.
2
The spatial buildup of nonlinear compression in the cochlea.
Front Cell Neurosci. 2025 Jan 29;18:1450115. doi: 10.3389/fncel.2024.1450115. eCollection 2024.
3
The Shape of Noise to Come: Signal vs. Noise Amplification in the Active Cochlea.
AIP Conf Proc. 2024 Feb 27;3062(1). doi: 10.1063/5.0193604.
4
Intracochlear overdrive: Characterizing nonlinear wave amplification in the mouse apex.
J Acoust Soc Am. 2023 Nov 1;154(5):3414-3428. doi: 10.1121/10.0022446.

本文引用的文献

1
Nonlinear cochlear mechanics without direct vibration-amplification feedback.
Phys Rev Res. 2020 Feb-Apr;2(1). doi: 10.1103/physrevresearch.2.013218. Epub 2020 Feb 26.
2
The cochlear ear horn: geometric origin of tonotopic variations in auditory signal processing.
Sci Rep. 2020 Nov 25;10(1):20528. doi: 10.1038/s41598-020-77042-w.
3
Simple transformations capture auditory input to cortex.
Proc Natl Acad Sci U S A. 2020 Nov 10;117(45):28442-28451. doi: 10.1073/pnas.1922033117. Epub 2020 Oct 23.
4
The cochlear outer hair cell speed paradox.
Proc Natl Acad Sci U S A. 2020 Sep 8;117(36):21880-21888. doi: 10.1073/pnas.2003838117. Epub 2020 Aug 26.
5
Suppression tuning curves in a two-degrees-of-freedom nonlinear cochlear model.
J Acoust Soc Am. 2020 Jul;148(1):EL8. doi: 10.1121/10.0001506.
10
The frequency limit of outer hair cell motility measured in vivo.
Elife. 2019 Sep 24;8:e47667. doi: 10.7554/eLife.47667.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验