Suppr超能文献

相似文献

1
Characterization and application of fluidic properties of trinucleotide repeat sequences by wax-on-plastic microfluidics.
J Mater Chem B. 2020 Jan 28;8(4):743-751. doi: 10.1039/c9tb02208b. Epub 2020 Jan 2.
4
Measuring Dynamic Behavior of Trinucleotide Repeat Tracts In Vivo in Saccharomyces cerevisiae.
Methods Mol Biol. 2018;1672:439-470. doi: 10.1007/978-1-4939-7306-4_30.
5
Molecular mechanism of resolving trinucleotide repeat hairpin by helicases.
Structure. 2015 Jun 2;23(6):1018-27. doi: 10.1016/j.str.2015.04.006. Epub 2015 May 21.
6
Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences.
J Phys Chem Lett. 2019 Jul 18;10(14):3985-3990. doi: 10.1021/acs.jpclett.9b01524. Epub 2019 Jul 3.
8
Stabilizing effects of interruptions on trinucleotide repeat expansions in Saccharomyces cerevisiae.
Mol Cell Biol. 2000 Jan;20(1):173-80. doi: 10.1128/MCB.20.1.173-180.2000.
9
DNA repair and trinucleotide repeat instability.
Front Biosci. 2003 May 1;8:s653-65. doi: 10.2741/1107.
10
Small interfering RNAs based on huntingtin trinucleotide repeats are highly toxic to cancer cells.
EMBO Rep. 2018 Mar;19(3). doi: 10.15252/embr.201745336. Epub 2018 Feb 12.

引用本文的文献

1
DNA interfaces with dimensional materials for biomedical applications.
RSC Adv. 2021 Aug 23;11(45):28332-28341. doi: 10.1039/d1ra04917h. eCollection 2021 Aug 16.
2
PNA microprobe for label-free detection of expanded trinucleotide repeats.
RSC Adv. 2022 Mar 10;12(13):7757-7761. doi: 10.1039/d2ra00230b. eCollection 2022 Mar 8.
3
Desktop Fabrication of Lab-On-Chip Devices on Flexible Substrates: A Brief Review.
Micromachines (Basel). 2020 Jan 23;11(2):126. doi: 10.3390/mi11020126.

本文引用的文献

1
Long-Range Hairpin Slippage Reconfiguration Dynamics in Trinucleotide Repeat Sequences.
J Phys Chem Lett. 2019 Jul 18;10(14):3985-3990. doi: 10.1021/acs.jpclett.9b01524. Epub 2019 Jul 3.
2
The hexanucleotide repeat expansion presents a challenge for testing laboratories and genetic counseling.
Amyotroph Lateral Scler Frontotemporal Degener. 2019 Aug;20(5-6):310-316. doi: 10.1080/21678421.2019.1588904. Epub 2019 Mar 23.
3
Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits.
Lab Chip. 2018 Aug 7;18(16):2323-2347. doi: 10.1039/c8lc00458g.
4
Recent advances in the detection of repeat expansions with short-read next-generation sequencing.
F1000Res. 2018 Jun 13;7. doi: 10.12688/f1000research.13980.1. eCollection 2018.
6
Repeat expansion diseases.
Handb Clin Neurol. 2018;147:105-123. doi: 10.1016/B978-0-444-63233-3.00009-9.
7
A Novel Electrochemical Biosensor Based on a Double-Signal Technique for d(CAG) Trinucleotide Repeats.
ACS Appl Mater Interfaces. 2017 Dec 20;9(50):44231-44240. doi: 10.1021/acsami.7b15014. Epub 2017 Dec 8.
8
Profiling of Short-Tandem-Repeat Disease Alleles in 12,632 Human Whole Genomes.
Am J Hum Genet. 2017 Nov 2;101(5):700-715. doi: 10.1016/j.ajhg.2017.09.013.
9
Detection of long repeat expansions from PCR-free whole-genome sequence data.
Genome Res. 2017 Nov;27(11):1895-1903. doi: 10.1101/gr.225672.117. Epub 2017 Sep 8.
10
RNA biology of disease-associated microsatellite repeat expansions.
Acta Neuropathol Commun. 2017 Aug 29;5(1):63. doi: 10.1186/s40478-017-0468-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验