Suppr超能文献

通过机器学习分析药物转运体 OAT1 和 OAT3 的独特代谢物偏好。

Unique metabolite preferences of the drug transporters OAT1 and OAT3 analyzed by machine learning.

机构信息

Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California 92093-0693.

Department of Biology, University of California San Diego, La Jolla, California 92093-0693.

出版信息

J Biol Chem. 2020 Feb 14;295(7):1829-1842. doi: 10.1074/jbc.RA119.010729. Epub 2020 Jan 2.

Abstract

The multispecific organic anion transporters, OAT1 (SLC22A6) and OAT3 (SLC22A8), the main kidney elimination pathways for many common drugs, are often considered to have largely-redundant roles. However, whereas examination of metabolomics data from -knockout mice ( and ) revealed considerable overlap, over a hundred metabolites were increased in the plasma of one or the other of these knockout mice. Many of these relatively unique metabolites are components of distinct biochemical and signaling pathways, including those involving amino acids, lipids, bile acids, and uremic toxins. Cheminformatics, together with a "logical" statistical and machine learning-based approach, identified a number of molecular features distinguishing these unique endogenous substrates. Compared with OAT1, OAT3 tends to interact with more complex substrates possessing more rings and chiral centers. An independent "brute force" approach, analyzing all possible combinations of molecular features, supported the logical approach. Together, the results suggest the potential molecular basis by which OAT1 and OAT3 modulate distinct metabolic and signaling pathways As suggested by the Remote Sensing and Signaling Theory, the analysis provides a potential mechanism by which "multispecific" kidney proximal tubule transporters exert distinct physiological effects. Furthermore, a strong metabolite-based machine-learning classifier was able to successfully predict unique OAT1 OAT3 drugs; this suggests the feasibility of drug design based on knockout metabolomics of drug transporters. The approach can be applied to other SLC and ATP-binding cassette drug transporters to define their nonredundant physiological roles and for analyzing the potential impact of drug-metabolite interactions.

摘要

多特异性有机阴离子转运体 OAT1(SLC22A6)和 OAT3(SLC22A8)是许多常见药物在肾脏中的主要消除途径,通常被认为具有很大程度的冗余作用。然而,对敲除小鼠(和)的代谢组学数据的研究表明,尽管存在相当大的重叠,但在这些敲除小鼠中的一种或另一种中,有超过一百种代谢物的血浆水平升高。这些相对独特的代谢物中的许多都是独特的生化和信号通路的组成部分,包括涉及氨基酸、脂质、胆汁酸和尿毒症毒素的通路。化学信息学以及基于“逻辑”统计和机器学习的方法,确定了区分这些独特内源性底物的一些分子特征。与 OAT1 相比,OAT3 倾向于与具有更多环和手性中心的更复杂底物相互作用。一种独立的“暴力”方法,分析所有可能的分子特征组合,支持了逻辑方法。总的来说,这些结果表明了 OAT1 和 OAT3 调节不同代谢和信号通路的潜在分子基础。正如远程传感和信号理论所建议的那样,该分析提供了一种潜在的机制,通过该机制,“多特异性”肾脏近端小管转运体发挥不同的生理作用。此外,基于代谢物的强大机器学习分类器能够成功预测独特的 OAT1-OAT3 药物;这表明基于药物转运体敲除代谢组学进行药物设计的可行性。该方法可应用于其他 SLC 和 ABC 药物转运体,以定义其非冗余的生理作用,并分析药物-代谢物相互作用的潜在影响。

相似文献

10
A key role for the transporter OAT1 in systemic lipid metabolism.OAT1 转运体在全身脂质代谢中的关键作用。
J Biol Chem. 2021 Jan-Jun;296:100603. doi: 10.1016/j.jbc.2021.100603. Epub 2021 Mar 27.

引用本文的文献

2
Recent Advances on the Regulations of Organic Anion Transporters.有机阴离子转运体调控的最新进展
Pharmaceutics. 2024 Oct 24;16(11):1355. doi: 10.3390/pharmaceutics16111355.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验