Suppr超能文献

基于机器学习的个体静息态 fMRI 模型构建运动任务激活。

Modeling motor task activation from resting-state fMRI using machine learning in individual subjects.

机构信息

Department of Medical Imaging, the First Affiliated Hospital of Xi'an Jiaotong University, No. 277 West Yanta Road, Xi'an, 710061, Shaanxi Province, China.

Institute for Biomedical Engineering, Technical University of Munich, Munich, Germany.

出版信息

Brain Imaging Behav. 2021 Feb;15(1):122-132. doi: 10.1007/s11682-019-00239-9.

Abstract

Resting-state functional MRI (rs-fMRI) has provided important insights into brain physiology. It has become an increasingly popular method for presurgical mapping, as an alternative to task-based functional MRI wherein the subject performs a task while being scanned. However, there is no commonly acknowledged gold standard approach for detecting eloquent brain areas using rs-fMRI data in clinical settings. In this study, a general linear model-based machine learning (GLM-ML) approach was tested to predict individual motor task activation based on rs-fMRI data. Its accuracy was then compared to a conventional independent component analysis (ICA) approach. 47 healthy subjects were scanned using resting state, active and passive motor task fMRI experiments using a clinically applicable low-resolution fMRI protocol. The model was trained to associate rs-fMRI network maps with that of hand movement task fMRI, then used to predict task activation maps for unseen subjects solely based on their rs-fMRI data. Our results showed that the GLM-ML approach can accurately predict individual differences in task activation using rs-fMRI data and outperform conventional ICA to detect task activation in the primary sensorimotor region. Furthermore, the predicted activation maps using the GLM -ML model matched well with the activation of passive hand movement fMRI on an individual basis. These results suggest that GLM-ML approach can robustly predict individual differences of task activation based on conventional low-resolution rs-fMRI data and has important implications for future clinical applications.

摘要

静息态功能磁共振成像(rs-fMRI)为理解大脑生理学提供了重要的视角。它已经成为术前映射的一种越来越受欢迎的方法,可作为任务型 fMRI 的替代方法,在任务型 fMRI 中,被扫描者在执行任务的同时进行扫描。然而,在临床环境中,使用 rs-fMRI 数据检测功能区还没有被普遍认可的金标准方法。在这项研究中,我们测试了一种基于广义线性模型的机器学习(GLM-ML)方法,用于根据 rs-fMRI 数据预测个体运动任务的激活。然后将其准确性与传统的独立成分分析(ICA)方法进行了比较。47 名健康受试者接受了静息态、主动和被动运动任务 fMRI 实验的扫描,使用的是一种临床适用的低分辨率 fMRI 方案。该模型经过训练,将 rs-fMRI 网络图谱与手部运动任务 fMRI 的图谱相关联,然后仅根据未参与实验的受试者的 rs-fMRI 数据,用于预测其任务激活图谱。我们的研究结果表明,GLM-ML 方法可以使用 rs-fMRI 数据准确预测任务激活的个体差异,并优于传统的 ICA 方法,以检测初级感觉运动区的任务激活。此外,使用 GLM-ML 模型预测的激活图谱与个体被动手部运动 fMRI 的激活图谱相匹配。这些结果表明,GLM-ML 方法可以根据常规低分辨率 rs-fMRI 数据稳健地预测任务激活的个体差异,对未来的临床应用具有重要意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验