Department of Medical Imaging, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
Department of Computer Science, Technical University of Munich, Munich, Germany.
Eur Radiol. 2021 Jul;31(7):5253-5262. doi: 10.1007/s00330-021-07825-w. Epub 2021 Mar 23.
The study aimed to evaluate the predictive validity of the neural network (NN) method for presurgical mapping of motor areas using resting-state functional MRI (rs-fMRI) data of patients with brain tumor located in the perirolandic cortex (PRC).
A total of 109 patients with brain tumors occupying PRC underwent rs-fMRI and hand movement task-based fMRI (tb-fMRI) scans. Using a NN model trained on fMRI data of 47 healthy controls, individual task activation maps were predicted from their rs-fMRI data. NN-predicted maps were compared with task activation and independent component analysis (ICA)-derived maps. Spatial Pearson's correlation coefficients (CC) matrices and Dice coefficients (DC) between task activation and predicted activation using NN (DC) and ICA (DC) were calculated and compared using non-parametric tests. The effects of tumor types and head motion on predicted maps were demonstrated.
The CC matrix of NN-predicted maps showed higher diagonal values compared with ICA-derived maps (p < 0.001). DC were higher than DC (p < 0.001) for patients with or without motor deficits. Lower DCs were found in subjects with head motion greater than one voxel. DCs were higher on the nontumor side than on the tumor side (p < 0.001), especially in the glioma group compared with meningioma and metastatic groups.
This study indicated that the NN approach could predict individual motor activation using rs-fMRI data and could have promising clinical applications in brain tumor patients with anatomical and functional reorganizations.
• The neural network machine learning approach successfully predicted hand motor activation in patients with a tumor in the perirolandic cortex, despite space-occupying effects and possible functional reorganization. • Compared to the conventional independent component analysis, the neural network approach utilizing resting-state fMRI data yielded a higher correlation to the active task hand activation data. • The Dice coefficient of machine learning-predicted activation vs. task fMRI activation was different between tumor and nontumor side, also between tumor types, which might indicate different effects of possible neurovascular uncoupling on resting-state and task fMRI.
本研究旨在评估神经网络(NN)方法在评估位于大脑肿瘤患者术前运动区的预测性方面的有效性,这些患者的大脑肿瘤位于大脑皮层运动区周围(PRC)。
共 109 名患有 PRC 脑肿瘤的患者接受了静息态功能磁共振成像(rs-fMRI)和手部运动任务 fMRI(tb-fMRI)扫描。使用基于 47 名健康对照者 fMRI 数据训练的 NN 模型,从他们的 rs-fMRI 数据中预测个体任务激活图。将 NN 预测的图谱与任务激活和独立成分分析(ICA)衍生的图谱进行比较。计算任务激活与使用 NN(DC)和 ICA(DC)预测激活之间的空间 Pearson 相关系数(CC)矩阵和 Dice 系数(DC),并使用非参数检验进行比较。还证明了肿瘤类型和头部运动对预测图谱的影响。
NN 预测图谱的 CC 矩阵显示出比 ICA 衍生图谱更高的对角值(p < 0.001)。对于有或没有运动障碍的患者,DC 均高于 DC(p < 0.001)。头部运动大于一个体素的受试者的 DC 较低。在无肿瘤侧的 DC 高于肿瘤侧(p < 0.001),尤其是与脑膜瘤和转移性肿瘤组相比,在神经胶质瘤组中。
本研究表明,NN 方法可以使用 rs-fMRI 数据预测个体运动激活,并且在大脑肿瘤患者中具有有前途的临床应用,这些患者存在解剖和功能重排。
•神经网机器学习方法成功预测了位于大脑皮层运动区周围的肿瘤患者的手部运动激活,尽管存在占位效应和可能的功能重排。•与传统的独立成分分析相比,使用静息态 fMRI 数据的神经网络方法与主动任务手激活数据的相关性更高。•机器学习预测的激活与任务 fMRI 激活之间的 Dice 系数在肿瘤侧和非肿瘤侧之间,以及在肿瘤类型之间均有所不同,这可能表明可能的神经血管解耦对静息态和任务 fMRI 的不同影响。